Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Opt Lett ; 48(12): 3123-3126, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319042

RESUMO

Devices based on the lossy mode resonance (LMR) effect have found numerous sensing applications. Herein, the enhancement of the sensing properties by the introduction of an intermediate layer between the substrate and the LMR-supporting film is discussed. Experimental results for a silicon oxide (SiO2) layer of tuned thickness between a glass slide substrate and a thin film of titanium oxide (TiO2) prove the possibility of significantly increasing the LMR depth and the figure of merit (FoM) for refractive index sensing applications, which is supported by a numerical analysis using the plane wave method for a one-dimensional multilayer waveguide. The application of the intermediate layer allows the introduction of a new, to the best of our knowledge, degree of freedom into the design of LMR-based sensors, resulting in improved performance for demanding fields such as chemical sensing or biosensing.


Assuntos
Técnicas Biossensoriais , Refratometria , Dióxido de Silício
2.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772491

RESUMO

The use of planar waveguides has recently shown great success in the field of optical sensors based on the Lossy Mode Resonance (LMR) phenomenon. The properties of Graphene Oxide (GO) have been widely exploited in various sectors of science and technology, with promising results for gas sensing applications. This work combines both, the LMR-based sensing technology on planar waveguides and the use of a GO thin film as a sensitive coating, to monitor ethanol, water, and acetone. Experimental results on the fabrication and performance of the sensor are presented. The obtained results showed a sensitivity of 3.1, 2.0, and 0.6 pm/ppm for ethanol, water, and acetone respectively, with a linearity factor R2 > 0.95 in all cases.

3.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447798

RESUMO

The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 µ until approximately 42.5 µm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Tecnologia de Fibra Óptica/métodos
4.
Analyst ; 147(23): 5477-5485, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36321954

RESUMO

Lossy mode resonance (LMR)-based optical sensors change their wavelength upon contact with substances or gases. This allows developing applications to detect the refractive index of the surrounding medium and even the thickness of the biolayers deposited on the waveguide. In the same way, when acoustic sensors are in contact with a liquid, it is possible to determine parameters, especially mechanical ones such as shape of the particle or molecule, mass load, elastic constants and viscosity of the liquid. This work reports the development of a system that combines LMR with surface acoustic wave (SAW) technologies to characterize a liquid in terms of its refractive index and viscosity simultaneously. Conveniently prepared glucose solutions are used for sensor calibration. The refractive index of the solutions ranges from 1.33 to 1.41 and its viscosity ranges from 1.005 mPa·s to 9 mPa·s, respectively. A sensitivity of 332 nm per RIU has been achieved with the optical sensor while the acoustic sensor has shown a sensitivity of -1.5 dB/(mPa·s). This new combinational concept could be expanded to the development of more demanding applications such as chemical sensors or biosensors.

5.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009906

RESUMO

A new method to process the vibration signal acquired by an accelerometer placed in a planetary gearbox housing is proposed, which is useful to detect potential faults. The method is based on the phenomenological model and consists of the projection of the healthy vibration signals onto an orthonormal basis. Low pass components representation and Gram-Schmidt's method are conveniently used to obtain such a basis. Thus, the measured signals can be represented by a set of scalars that provide information on the gear state. If these scalars are within a predefined range, then the gear can be diagnosed as correct; in the opposite case, it will require further evaluation. The method is validated using measured vibration signals obtained from a laboratory test bench.


Assuntos
Modalidades de Fisioterapia , Vibração
6.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080844

RESUMO

In the last few years, the growing demand for electric vehicles (EVs) in the transportation sector has contributed to the increased use of electric rechargeable batteries. At present, lithium-ion (Li-ion) batteries are the most commonly used in electric vehicles. Although once their storage capacity has dropped to below 80-70% it is no longer possible to use these batteries in EVs, it is feasible to use them in second-life applications as stationary energy storage systems. The purpose of this study is to present an embedded system that allows a Nissan® LEAF Li-ion battery to communicate with an Ingecon® Sun Storage 1Play inverter, for control and monitoring purposes. The prototype was developed using an Arduino® microcontroller and a graphical user interface (GUI) on LabVIEW®. The experimental tests have allowed us to determine the feasibility of using Li-ion battery packs (BPs) coming from the automotive sector with an inverter with no need for a prior disassembly and rebuilding process. Furthermore, this research presents a programming and hardware methodology for the development of the embedded systems focused on second-life electric vehicle Li-ion batteries. One second-life battery pack coming from a Nissan® Leaf and aged under real driving conditions was integrated into a residential microgrid serving as an energy storage system (ESS).

7.
Sensors (Basel) ; 21(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204709

RESUMO

A fiber Bragg grating patterned on a SnO2 thin film deposited on the flat surface of a D-shaped polished optical fiber is studied in this work. The fabrication parameters of this structure were optimized to achieve a trade-off among reflected power, full width half maximum (FWHM), sensitivity to the surrounding refractive index (SRI), and figure of merit (FOM). In the first place, the influence of the thin film thickness, the cladding thickness between the core and the flat surface of the D-shaped fiber (neck), and the length of the D-shaped zone over the reflected power and the FWHM were assessed. Reflected peak powers in the range from -2 dB to -10 dB can be easily achieved with FWHM below 100 pm. In the second place, the sensitivity to the SRI, the FWHM, and the FOM were analyzed for variations of the SRI in the 1.33-1.4 range, the neck, and the thin-film thickness. The best sensitivities theoretically achieved for this device are next to 40 nm/RIU, while the best FOM has a value of 114 RIU-1.

8.
Sensors (Basel) ; 21(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499050

RESUMO

Pollution in cities induces harmful effects on human health, which continuously increases the global demand of gas sensors for air quality control and monitoring. In the same manner, the industrial sector requests new gas sensors for their productive processes. Moreover, the association between exhaled gases and a wide range of diseases or health conditions opens the door for new diagnostic applications. The large number of applications for gas sensors has permitted the development of multiple sensing technologies. Among them, optical fiber gas sensors enable their utilization in remote locations, confined spaces or hostile environments as well as corrosive or explosive atmospheres. Particularly, Lossy Mode Resonance (LMR)-based optical fiber sensors employ the traditional metal oxides used for gas sensing purposes for the generation of the resonances. Some research has been conducted on the development of LMR-based optical fiber gas sensors; however, they have not been fully exploited yet and offer optimal possibilities for improvement. This review gives the reader a complete overview of the works focused on the utilization of LMR-based optical fiber sensors for gas sensing applications, summarizing the materials used for the development of these sensors as well as the fabrication procedures and the performance of these devices.

9.
Opt Express ; 28(1): 288-301, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118958

RESUMO

The generation of lossy mode resonances (LMRs) with a setup based on lateral incidence of light in coverslips is a simple platform that can be used for sensing. Here the versatility of this platform is proved by studying the deposition of different coating materials. The devices were characterized with both SEM and AFM microscopy, as well as ellipsometry, which allowed obtaining the main parameters of the coatings (thickness, refractive index and extinction coefficient) and relating them with the different sensitivities to refractive index attained with each material. In this way it was possible to confirm and complete the basic rules observed with lossy mode resonance based optical fiber sensors towards the design of simpler and more compact applications in domains such as chemical sensors or biosensors.

10.
Sensors (Basel) ; 18(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880731

RESUMO

Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

11.
Opt Express ; 25(10): 10743-10756, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788764

RESUMO

Nanocoated D-shaped optical fibers have been proven as effective sensors. Here, we show that the full width at half minimum (FWHM) of lossy mode resonance can be reduced by optimizing the nanocoating width, thickness and refractive index. As a counterpart, several resonances are observed in the optical spectrum for specific conditions. These resonances are caused by multiple modes guided in the nanocoating. By optimizing the width of the coating and the imaginary part of its refractive index, it is possible to isolate one of these resonances, which allows one to reduce the full width at half minimum of the device and, hence, to increase the figure of merit. Moreover, it is even possible to avoid the need of a polarizer by designing a device where the resonance bands for TE and TM polarization are centered at the same wavelength. This is interesting for the development of optical filters and sensors with a high figure of merit.

12.
Sensors (Basel) ; 17(4)2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422074

RESUMO

A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

13.
Sensors (Basel) ; 17(5)2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28468267

RESUMO

The refractive index of sputtered indium oxide nanocoatings has been altered just by changing the sputtering parameters, such as pressure. These induced changes have been exploited for the generation of a grating on the end facet of an optical fiber towards the development of wavelength-modulated optical fiber humidity sensors. A theoretical analysis has also been performed in order to study the different parameters involved in the fabrication of this optical structure and how they would affect the sensitivity of these devices. Experimental and theoretical results are in good agreement. A sensitivity of 150 pm/%RH was obtained for relative humidity changes from 20% to 60%. This kind of humidity sensors shows a maximum hysteresis of 1.3% relative humidity.

14.
Sensors (Basel) ; 17(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019945

RESUMO

The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.

15.
Opt Express ; 24(16): 17680-5, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505736

RESUMO

This work presents a refractive index sensor based on a long period fiber grating (LPFG) made in a reduced cladding fiber whose low order cladding modes have the turning point at large wavelengths. The combination of these parameters results in an improved sensitivity of 8734 nm/refractive index unit (RIU) for the LP0,3 mode in the 1400-1650 wavelength range. This value is similar to that obtained with thin-film coated LPFGs, which permits to avoid the coating deposition step. The numerical simulations are in agreement with the experimental results.

16.
Opt Lett ; 40(21): 4867-70, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512470

RESUMO

In this work, the modal transition induced by lossy mode resonances has been analyzed as a function of wavelength for thin-film coated cladding removed fibers. The wavelength dependence of the modal structure allows us to explain the resonance phenomenon. The numerical data obtained were calculated with a method based on the exact calculation of core modes. Theoretical simulations have been compared with experimental results showing good agreement.

17.
Anal Chem ; 86(11): 5245-56, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24806513

RESUMO

We propose a novel multifrequency phase-modulation method for luminescence spectroscopy that uses a rectangular-wave modulated excitation source with a short duty cycle. It is used for obtaining more detailed information about the luminescence system: the information provided by different harmonics allows estimating a model for describing the global frequency response of the luminescent system for a wide range of analyte concentration and frequencies. Additionally, the proposed method improves the accuracy in determination of the analyte concentration. This improvement is based on a simple algorithm that combines multifrequency information provided by the different harmonics of the rectangular-wave signal, which can be easily implemented in existing photoluminescence instruments by replacing the excitation light source (short duty cycle rectangular signal instead of sinusoidal signal) and performing appropriate digital signal processing after the transducer (implemented in software). These claims have been demonstrated by using a well-known oxygen-sensing film coated at the end of an optical fiber [a Pt(II) porphyrin immobilized in polystyrene]. These experimental results show that use of the proposed multifrequency phase-modulation method (1) provides adequate modeling of the global response of the luminescent system (R(2) > 0.9996) and (2) decreases the root-mean-square error in analytical determination (from 0.1627 to 0.0128 kPa at 0.5 kPa O2 and from 0.9393 to 0.1532 kPa at 20 kPa O2) in comparison with a conventional phase-modulation method based on a sinusoidally modulated excitation source (under equal luminous power conditions).

18.
Appl Opt ; 53(18): 3913-9, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24979423

RESUMO

Thin-film coated single-mode-multimode-single-mode (SMS) structures have been analyzed both theoretically and experimentally with the aim of detecting different refractive indices. By adequate selection of the thickness of the thin film and of the diameter of the multimode segment in the SMS structure, a seven-fold improvement can be obtained in the sensitivity of the device to the surrounding medium refractive index, achieving a maximum sensitivity of 1199.18 nm/refractive index unit for the range of refractive indices from 1.321 to 1.382. Using layer-by-layer self-assembly for deposition, both on the cladding and on the tip of the multimode segment, allows the reflected power to increase, which avoids the application of a mirror on the tip of the multimode segment.

19.
Sensors (Basel) ; 14(3): 4060-73, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24583969

RESUMO

A universal pH indicator is used to fabricate a fiber optic ammonia sensor. The advantage of this pH indicator is that it exhibits sensitivity to ammonia over a broad wavelength range. This provides a differential response, with a valley around 500 nm and a peak around 650 nm, which allows us to perform ratiometric measurements. The ratiometric measurements provide not only an enhanced signal, but can also eliminate any external disturbance due to humidity or temperature fluctuations. In addition, the indicator is embedded in a hydrophobic and gas permeable polyurethane film named Tecoflex®. The film provides additional advantages to the sensor, such as operation in dry environments, efficient transport of the element to be measured to the sensitive area of the sensor, and prevent leakage or detachment of the indicator. The combination of the universal pH indicator and Tecoflex® film provides a reliable and robust fiber optic ammonia sensor.


Assuntos
Amônia/análise , Tecnologia de Fibra Óptica/instrumentação , Concentração de Íons de Hidrogênio , Fibras Ópticas , Processamento de Sinais Assistido por Computador , Análise Espectral
20.
Sensors (Basel) ; 14(9): 17817-28, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25256111

RESUMO

In this work we demonstrate efficient quality control of a variety of gasoline and ethanol (gasohol) blends using a multimode interference (MMI) fiber sensor. The operational principle relies on the fact that the addition of ethanol to the gasohol blend reduces the refractive index (RI) of the gasoline. Since MMI sensors are capable of detecting small RI changes, the ethanol content of the gasohol blend is easily determined by tracking the MMI peak wavelength response. Gasohol blends with ethanol contents ranging from 0% to 50% has been clearly identified using this device, which provides a linear response with a maximum sensitivity of 0.270 nm/% EtOH. The sensor can also distinguish when water incorporated in the blend has exceeded the maximum volume tolerated by the gasohol blend, which is responsible for phase separation of the ethanol and gasoline and could cause serious engine failures. Since the MMI sensor is straightforward to fabricate and does not require any special coating it is a cost effective solution for real time and in-situ monitoring of the quality of gasohol blends.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa