Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 11(12): 11763-11771, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30844239

RESUMO

Plasmonic supercrystals and periodically structured arrays comprise a class of materials with unique optical properties that result from the interplay of plasmon resonances, as well as near- and far-field coupling. Controlled synthesis of such hierarchical structures remains a fundamental challenge, as it demands strict control over the assembly morphology, array size, lateral spacing, and macroscale homogeneity. Current fabrication approaches involve complicated multistep procedures lacking scalability and reproducibility, which has hindered the practical application of plasmonic supercrystal arrays. Herein, these challenges are addressed by adding an organic solvent to achieve kinetic control over the template-assisted colloidal assembly of nanoparticles from aqueous dispersion. This method yields highly regular periodic arrays, with feature sizes ranging from less than 200 nm up to tens of microns. A combined experimental/computational approach reveals that the underlying mechanism is a combination of the removal of interfacial surfactant micelles from the particle interface and altered capillary flows. Assessing the efficacy of such square arrays for surface-enhanced Raman scattering spectroscopy, we find that a decrease of the lattice periodicity from 750 nm down to 400 nm boosts the signal by more than an order of magnitude, thereby enabling sensitive detection of analytes, such as the bacterial quorum sensing molecule pyocyanin, even in complex biological media.

3.
ACS Nano ; 12(8): 8531-8539, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30106555

RESUMO

Metal colloids are of great interest in the field of nanophotonics, mainly due to their morphology-dependent optical properties, but also because they are high-quality building blocks for complex plasmonic architectures. Close-packed colloidal supercrystals not only serve for investigating the rich plasmonic resonances arising in strongly coupled arrangements but also enable tailoring the optical response, on both the nano- and the macroscale. Bridging these vastly different length scales at reasonable fabrication costs has remained fundamentally challenging, but is essential for applications in sensing, photovoltaics or optoelectronics, among other fields. We present here a scalable approach to engineer plasmonic supercrystal arrays, based on the template-assisted assembly of gold nanospheres with topographically patterned polydimethylsiloxane molds. Regular square arrays of hexagonally packed supercrystals were achieved, reaching periodicities down to 400 nm and feature sizes around 200 nm, over areas up to 0.5 cm2. These two-dimensional supercrystals exhibit well-defined collective plasmon modes that can be tuned from the visible through the near-infrared by simple variation of the lattice parameter. We present electromagnetic modeling of the physical origin of the underlying hybrid modes and demonstrate the application of superlattice arrays as surface-enhanced Raman scattering (SERS) spectroscopy substrates which can be tailored for a specific probe laser. We therefore investigated the influence of the lattice parameter, local degree of order, and cluster architecture to identify the optimal configuration for highly efficient SERS of a nonresonant Raman probe with 785 nm excitation.

4.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327385

RESUMO

The design of ultrathin semiconducting materials that achieve broadband absorption is a long-sought-after goal of crucial importance for optoelectronic applications. To date, attempts to tackle this problem consisted either of the use of strong-but narrowband-or broader-but moderate-light-trapping mechanisms. Here, a strategy that achieves broadband optimal absorption in arbitrarily thin semiconductor materials for all energies above their bandgap is presented. This stems from the strong interplay between Brewster modes, sustained by judiciously nanostructured thin semiconductors on metal films, and photonic crystal modes. Broadband near-unity absorption in Ge ultrathin films is demonstrated, which extends from the visible to the Ge bandgap in the near-infrared and is robust against angle of incidence variation. The strategy follows an easy and scalable fabrication route enabled by soft nanoimprinting lithography, a technique that allows seamless integration in many optoelectronic fabrication procedures.

5.
Nat Photonics ; 12(6): 343-348, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29881447

RESUMO

As contamination and environmental degradation increase nowadays, there is a huge demand for new eco-friendly materials. Despite its use for thousands of years, cellulose and its derivatives have gained renewed interest as favourable alternatives to conventional plastics, due to their abundance and lower environmental impact. We report the fabrication of photonic and plasmonic structures by moulding hydroxypropyl cellulose into sub-micrometric periodic lattices, using soft lithography. This is an alternative way to achieve structural colour in this material which is usually obtained exploiting its chiral nematic phase. Cellulose based photonic crystals are biocompatible and can be dissolved in water or not depending on the derivative employed. Patterned cellulose membranes exhibit tuneable colours and may be used to boost the photoluminescence of a host organic dye. Furthermore, we show how metal coating these cellulose photonic architectures leads to plasmonic crystals with excellent optical properties acting as disposable surface enhanced Raman spectroscopy substrates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa