Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 545(7653): 208-212, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445459

RESUMO

Optimizing the morphology of metal halide perovskite films is an important way to improve the performance of solar cells when these materials are used as light harvesters, because film homogeneity is correlated with photovoltaic performance. Many device architectures and processing techniques have been explored with the aim of achieving high-performance devices, including single-step deposition, sequential deposition and anti-solvent methods. Earlier studies have looked at the influence of reaction conditions on film quality, such as the concentration of the reactants and the reaction temperature. However, the precise mechanism of the reaction and the main factors that govern it are poorly understood. The consequent lack of control is the main reason for the large variability observed in perovskite morphology and the related solar-cell performance. Here we show that light has a strong influence on the rate of perovskite formation and on film morphology in both of the main deposition methods currently used: sequential deposition and the anti-solvent method. We study the reaction of a metal halide (lead iodide) with an organic compound (methylammonium iodide) using confocal laser scanning fluorescence microscopy and scanning electron microscopy. The lead iodide crystallizes before the intercalation of methylammonium iodide commences, producing the methylammonium lead iodide perovskite. We find that the formation of perovskite via such a sequential deposition is much accelerated by light. The influence of light on morphology is reflected in a doubling of solar-cell efficiency. Conversely, using the anti-solvent method to form methyl ammonium lead iodide perovskite in a single step from the same starting materials, we find that the best photovoltaic performance is obtained when films are produced in the dark. The discovery of light-activated crystallization not only identifies a previously unknown source of variability in opto-electronic properties, but also opens up new ways of tuning morphology and structuring perovskites for various applications.

2.
ACS Appl Mater Interfaces ; 15(28): 33581-33592, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417321

RESUMO

High photovoltaic performance and light stability are required for the practical outdoor use of lead-halide perovskite solar cells. To improve the light stability of perovskite solar cells, it is effective to introduce a self-assembled monolayer (SAM) between the carrier transport layer and the perovskite layer. Several alternative approaches in their molecular design and combination with multiple SAMs support high photovoltaic conversion efficiency (PCE). Herein, we report a new structure for improving both PCE and light stability, in which the surface of an electron transport layer (ETL) was modified by combining a fullerene-functionalized self-assembled monolayer (C60SAM) and a suitable gap-filling self-assembled monolayer (GFSAM). Small-sized GFSAMs can enter the gap space of the C60SAM and terminate the unterminated sites on the ETL surface. The best GFSAM in this study was formed using an isonicotinic acid solution. After a light stability test for 68 h at 50 °C under 1 sun illumination, the best cell with C60SAM and GFSAM showed a PCE of 18.68% with a retention rate of over 99%. Moreover, following outdoor exposure for six months, the cells with C60SAM and GFSAM exhibited almost unchanged PCE. From the valence band spectra of the ETLs obtained using hard X-ray photoelectron spectroscopy, we confirmed a decrease in the offset at the ETL/perovskite interface owing to the additional GFSAM treatment on the C60SAM-modified ETL surface. Time-resolved microwave conductivity measurements demonstrated that the additional GFSAM improved electron extraction at the C60SAM-modified ETL/perovskite interface.

3.
J Phys Chem Lett ; 12(8): 2023-2028, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33605737

RESUMO

Organic-inorganic hybrid materials (OIHMs), such as methylammonium lead triiodide (MAPbI3), have a wide composition space because of the various potential combinations of organic molecules and inorganic cages. However, for unknown OHIMs, it is difficult to predict what kind of crystal structure will be stable without any experimental data. In this work, we report an efficient scheme for predicting crystal structures and phase diagrams of MA-Pb-I systems from first-principles calculations and genetic algorithms. In our scheme, OIHMs are divided into organic molecules and inorganic clusters. A pseudobinary phase diagram of MAI-PbI2 was obtained by predicting structures at each composition. These results indicated that only MAPbI3 and MA2PbI4 are stable phases, consistent with the experiments. In addition, the electronic and optical properties of the predicted structures were calculated and the solar cell performance was evaluated. Thus, our method allowed us to search for unknown OIHMs without any experimental data.

4.
ACS Appl Mater Interfaces ; 12(24): 27131-27139, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32427458

RESUMO

Organic-inorganic lead halide perovskites are promising materials for realization of low-cost and high-efficiency solar cells. Because of the toxicity of lead, Sn-based perovskite materials have been developed as alternatives to enable fabrication of Pb-free perovskite solar cells. However, the solar cell performance of Sn-based perovskite solar cells (Sn-PSCs) remains poor because of their large open-circuit voltage (VOC) loss. Sn-based perovskite materials have lower electron affinities than Pb-based perovskite materials, which result in larger conduction band offset (CBO) values at the interface between the Sn-based perovskite and a conventional electron transport layer (ETL) material such as TiO2. Herein, the relationship between the VOC and the CBO in these devices was studied to improve the solar cell performances of Sn-PSCs. It was found that the band offset at the ETL/perovskite layer interface affects the VOC of the Sn-PSCs significantly but does not affect that of the Pb-PSCs because the Sn-based perovskite material is a p-type semiconductor, unlike the Pb-based perovskite. It was also found that Nb2O5 has the CBO that is closest to zero for Sn-based perovskite materials, and the VOC values of Sn-PSCs that use Nb2O5 as their ETL are higher than those of Sn-PSCs using TiO2 or SnO2 ETLs. This study indicates that control of the energy alignment at the ETL/perovskite layer interface is an important factor in improving the VOC values of Sn-PSCs.

5.
Adv Mater ; 31(10): e1806823, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30633402

RESUMO

Perovskite solar cells have received great attention because of their rapid progress in efficiency, with a present certified highest efficiency of 23.3%. Achieving both high efficiency and high thermal stability is one of the biggest challenges currently limiting perovskite solar cells because devices displaying stability at high temperature frequently suffer from a marked decrease of efficiency. In this report, the relationship between perovskite composition and device thermal stability is examined. It is revealed that Rb can suppress the growth of PbI2 even under PbI2 -rich conditions and decreasing the Br ratio in the perovskite absorber layer can prevent the generation of unwanted RbBr-based aggregations. The optimized device achieved by engineering perovskite composition exhibits 92% power conversion efficiency retention in a stress test conducted at 85 °C/85% relative humidity (RH) according to an international standard (IEC 61215) while exceeding 20% power conversion efficiency (certified efficiency of 20.8% at 1 cm2 ). These results reveal the great potential for the practical use of perovskite solar cells in the near future.

6.
Adv Mater ; 29(15)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28106931

RESUMO

A room-temperature perovskite material yielding a power conversion efficiency of 18.1% (stabilized at 17.7%) is demonstrated by judicious selection of cations. Both cesium and methylammonium are necessary for room-temperature formamidinium-based perovskite to obtain the photoactive crystalline perovskite phase and high-quality crystals. This room-temperature-made perovskite material shows great potential for low-cost, large-scale manufacturing such as roll-to-roll processing.

7.
Nat Commun ; 7: 10379, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758549

RESUMO

Perovskite solar cells are one of the most promising photovoltaic technologies with their extraordinary progress in efficiency and the simple processes required to produce them. However, the frequent presence of a pronounced hysteresis in the current voltage characteristic of these devices arises concerns on the intrinsic stability of organo-metal halides, challenging the reliability of technology itself. Here, we show that n-doping of mesoporous TiO2 is accomplished by facile post treatment of the films with lithium salts. We demonstrate that the Li-doped TiO2 electrodes exhibit superior electronic properties, by reducing electronic trap states enabling faster electron transport. Perovskite solar cells prepared using the Li-doped films as scaffold to host the CH3NH3PbI3 light harvester produce substantially higher performances compared with undoped electrodes, improving the power conversion efficiency from 17 to over 19% with negligible hysteretic behaviour (lower than 0.3%).

8.
Energy Environ Sci ; 9(6): 1989-1997, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27478500

RESUMO

Today's best perovskite solar cells use a mixture of formamidinium and methylammonium as the monovalent cations. With the addition of inorganic cesium, the resulting triple cation perovskite compositions are thermally more stable, contain less phase impurities and are less sensitive to processing conditions. This enables more reproducible device performances to reach a stabilized power output of 21.1% and ∼18% after 250 hours under operational conditions. These properties are key for the industrialization of perovskite photovoltaics.

9.
Science ; 354(6309): 206-209, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27708053

RESUMO

All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a "cation cascade" to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.

10.
Adv Mater ; 28(25): 5031-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27122472

RESUMO

Hybrid organic-inorganic perovskite materials have risen up as leading components for light-harvesting applications. However, to date many questions are still open concerning the operation of perovskite solar cells (PSCs). A systematic analysis of the interplay among structural features, optoelectronic performance, and ionic movement behavior for FA0.83 MA0.17 Pb(I0.83 Br0.17 )3 PSCs is presented, which yield high power conversion efficiencies up to 20.8%.

11.
ChemSusChem ; 9(18): 2567-2571, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27553381

RESUMO

Triarylamine-based polymers with different functional groups were synthetized as hole-transport materials (HTMs) for perovskite solar cells (PSCs). The novel materials enabled efficient PSCs without the use of chemical doping (or additives) to enhance charge transport. Devices employing poly(triarylamine) with methylphenylethenyl functional groups (V873) showed a power conversion efficiency of 12.3 %, whereas widely used additive-free poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) demonstrated 10.8 %. Notably, devices with V873 enabled stable PSCs under 1 sun illumination at maximum power point tracking for approximately 40 h at room temperature, and in the dark under elevated temperature (85 °C) for more than 140 h. This is in stark contrast to additive-containing devices, which degrade significantly within the same time frame. The results present remarkable progress towards stable PSC under real working conditions and industrial stress tests.


Assuntos
Aminas/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Polímeros/química , Energia Solar , Titânio/química , Estabilidade de Medicamentos , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa