Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Pharmacol Rev ; 74(3): 462-505, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710133

RESUMO

The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.


Assuntos
Angiotensinogênio , Doenças Cardiovasculares , Feminino , Humanos , Masculino , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Angiotensinogênio/metabolismo , Doenças Cardiovasculares/metabolismo , Sistemas de Liberação de Medicamentos , Rim/irrigação sanguínea , Rim/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo
2.
Kidney Int ; 104(3): 508-525, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356621

RESUMO

Natriuretic peptides exert not only blood-lowering but also kidney-protective effects through guanylyl cyclase-A (GC-A), a natriuretic peptide receptor. Signaling through GC-A has been shown to protect podocytes from aldosterone-induced glomerular injury, and a p38 mitogen-activated protein kinase (MAPK) inhibitor reduced glomerular injury in aldosterone-infused podocyte-specific GC-A knockout mice. To explore the role of p38 MAPK in podocytes, we constructed podocyte-specific p38 MAPK and GC-A double knockout mice (pod-double knockout mice). Unexpectedly, aldosterone-infused and high salt-fed (B-ALDO)-treated pod-double knockout mice resulted in elevated serum creatinine, massive albuminuria, macrophage infiltration, foot process effacement, nephrin and podocin reduction, and additionally, intra-capillary fibrin thrombi, indicating endothelial injury. Microarray analysis showed increased plasminogen activator inhibitor-1 (PAI-1) in glomeruli of B-ALDO-treated pod-double knockout mice. In B-ALDO-treated pod-double knockout mice, PAI-1 increased in podocytes, and treatment with PAI-1 neutralizing antibody ameliorated intra-capillary thrombus formation. In vitro, deletion of p38 MAPK by the CRISPR/Cas9 system and knockdown of GC-A in human cultured podocytes upregulated PAI-1 and transforming growth factor- ß1 (TGF-ß1). When p38 MAPK knockout podocytes, transfected with a small interfering RNA to suppress GC-A, were co-cultured with glomerular endothelial cells in a transwell system, the expression of TGF-ß1 was increased in glomerular endothelial cells. PAI-1 inhibition ameliorated both podocyte and endothelial injury in the transwell system signifying elevated PAI-1 in podocytes is a factor disrupting normal podocyte-endothelial crosstalk. Thus, our results indicate that genetic dual deletion of p38 MAPK and GC-A in podocytes accelerates both podocyte and endothelial injuries, suggesting these two molecules play indispensable roles in podocyte function.


Assuntos
Podócitos , Trombose , Animais , Humanos , Camundongos , Aldosterona/farmacologia , Aldosterona/metabolismo , Células Endoteliais/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Camundongos Knockout , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Podócitos/metabolismo , Trombose/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Quinase 14 Ativada por Mitógeno
3.
Am J Physiol Renal Physiol ; 323(5): F515-F526, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049065

RESUMO

Although apoptosis of podocytes has been widely reported in in vitro studies, it has been less frequently and less definitively documented in in vivo situations. To investigate this discrepancy, we analyzed the dying process of podocytes in vitro and in vivo using LMB2, a human (h)CD25-directed immunotoxin. LMB2 induced cell death within 2 days in 56.8 ± 13.6% of cultured podocytes expressing hCD25 in a caspase-3, Bak1, and Bax-dependent manner. LMB2 induced typical apoptotic features, including TUNEL staining and fragmented nuclei without lactate dehydrogenase leakage. In vivo, LMB2 effectively eliminated hCD25-expressing podocytes in NEP25 mice. Podocytes injured by LMB2 were occasionally stained for cleaved caspase-3 and cleaved lamin A but never for TUNEL. Urinary sediment contained TUNEL-positive podocytes. To examine the effect of glomerular filtration, we performed unilateral ureteral obstruction in NEP25 mice treated with LMB2 1 day before euthanasia. In the obstructed kidney, glomeruli contained significantly more cleaved lamin A-positive podocytes than those in the contralateral kidney (50.1 ± 5.4% vs. 29.3 ± 4.1%, P < 0.001). To further examine the dying process without glomerular filtration, we treated kidney organoids generated from nephron progenitor cells of NEP25 mice with LMB2. Podocytes showed TUNEL staining and nuclear fragmentation. These results indicate that on activation of apoptotic caspases, podocytes are detached and lost in the urine before nuclear fragmentation and that the physical force of glomerular filtration facilitates detachment. This phenomenon may be the reason why definitive apoptosis is not observed in podocytes in vivo.NEW & NOTEWORTHY This report clarifies why morphologically definitive apoptosis is not observed in podocytes in vivo. When caspase-3 is activated in podocytes, these cells are immediately detached from the glomerulus and lost in the urine before DNA fragmentation occurs. Detachment is facilitated by glomerular filtration. This phenomenon explains why podocytes in vivo rarely show TUNEL staining and never apoptotic bodies.


Assuntos
Imunotoxinas , Podócitos , Camundongos , Humanos , Animais , Podócitos/metabolismo , Caspase 3/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/farmacologia , Proteína X Associada a bcl-2/metabolismo , Apoptose , Lactato Desidrogenases/metabolismo
4.
Kidney Int ; 102(1): 45-57, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483529

RESUMO

Paired box 2 (Pax2) is a transcription factor essential for kidney development and is reactivated in proximal tubular epithelial cells (PTECs) during recovery from kidney injury. However, the role of Pax2 in this process is still unknown. Here the role of Pax2 reactivation during injury was examined in the proliferation of PTECs using an ischemia-reperfusion injury (IRI) mouse model. Kidney proximal tubule-specific Pax2 conditional knockout mice were generated by mating kidney androgen-regulated protein-Cre and Pax2 flox mice. The degree of cell proliferation and fibrosis was assessed and a Pax2 inhibitor (EG1) was used to evaluate the role of Pax2 in the hypoxic condition of cultured PTECs (O2 5%, 24 hours). The number of Pax2-positive cells and Pax2 mRNA increased after IRI. Sirius red staining indicated that the area of interstitial fibrosis was significantly larger in knockout mice 14 days after IRI. The number of Ki-67-positive cells (an index of proliferation) was significantly lower in knockout than in wild-type mice after IRI, whereas the number of TUNEL-positive cells (an index of apoptotic cells) was significantly higher in knockout mice four days after IRI. Expression analyses of cell cycle-related genes showed that cyclin-dependent kinase 4 (CDK4) was significantly less expressed in the Pax2 knockout mice. In vitro data showed that the increase in CDK4 mRNA and protein expression induced by hypoxia was attenuated by EG1. Thus, Pax2 reactivation may be involved in PTEC proliferation by activating CDK4, thereby limiting kidney fibrosis.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/patologia , Animais , Proliferação de Células , Quinase 4 Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Fibrose , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/patologia
5.
Am J Physiol Renal Physiol ; 320(5): F922-F933, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719575

RESUMO

In progressive glomerular diseases, segmental podocyte injury often expands, leading to global glomerulosclerosis by unclear mechanisms. To study the expansion of podocyte injury, we established a new mosaic mouse model in which a fraction of podocytes express human (h)CD25 and can be injured by the immunotoxin LMB2. hCD25+ and hCD25- podocytes were designed to express tdTomato and enhanced green fluorescent protein (EGFP), respectively, which enabled cell sorting analysis of podocytes. After the injection of LMB2, mosaic mice developed proteinuria and glomerulosclerosis. Not only tdTomato+ podocytes but also EGFP+ podocytes were decreased in number and showed damage, as evidenced by a decrease in nephrin and an increase in desmin at both protein and RNA levels. Transcriptomics analysis found a decrease in the glucocorticoid-induced transcript 1 gene and an increase in the thrombospondin 4, heparin-binding EGF-like growth factor, and transforming growth factor-ß genes in EGFP+ podocytes; these genes may be candidate mediators of secondary podocyte damage. Pathway analysis suggested that focal adhesion, integrin-mediated cell adhesion, and focal adhesion-phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin signaling are involved in secondary podocyte injury. Finally, treatment of mosaic mice with angiotensin II receptor blocker markedly ameliorated secondary podocyte injury. This mosaic podocyte injury model has distinctly demonstrated that damaged podocytes cause secondary podocyte damage, which may be a promising therapeutic target in progressive kidney diseases.NEW & NOTEWORTHY This novel mosaic model has demonstrated that when a fraction of podocytes is injured, other podocytes are subjected to secondary injury. This spreading of injury may occur ubiquitously irrespective of the primary cause of podocyte injury, leading to end-stage renal failure. Understanding the molecular mechanism of secondary podocyte injury and its prevention is important for the treatment of progressive kidney diseases. This model will be a powerful tool for studying the indirect podocyte injury.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Nefropatias/induzido quimicamente , Podócitos/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde , Humanos , Imunotoxinas/toxicidade , Subunidade alfa de Receptor de Interleucina-2/administração & dosagem , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/metabolismo
6.
Kidney Int ; 99(5): 1149-1161, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582108

RESUMO

Podocyte injury and subsequent detachment are hallmarks of progressive glomerulosclerosis. In addition to cell injury, unknown mechanical forces on the injured podocyte may promote detachment. To identify the nature of these mechanical forces, we studied the dynamics of podocyte detachment using sequential ultrastructural geometry analysis by transmission electron microscopy in NEP25, a mouse model of podocytopathy induced by anti-Tac(Fv)-PE38 (LMB2), a fusion protein attached to Pseudomonas exotoxin A, targeting CD25 on podocytes. After LMB2 injection, foot process effacement occurred on day three but detachment commenced on day eight and extended to day ten, reaching toward the urinary pole in clusters. Podocyte detachment was associated with foot process effacement covering over 60% of the glomerular basement membrane length. However, approximately 25% of glomeruli with diffuse (over 80%) foot process effacement showed no detachment. Blocking glomerular filtration via unilateral ureteral obstruction resulted in diffuse foot process effacement but no pseudocysts or detachment, whereas uninephrectomy increased pseudocysts and accelerated detachment, indicating that glomerular filtrate drives podocyte detachment via pseudocyst formation as a forerunner. Additionally, more detachment was observed in juxtamedullary glomeruli than in superficial glomeruli. Thus, glomerular filtrate drives the dynamics of podocyte detachment in this model of podocytopathy. Hence, foot process effacement may be a prerequisite allowing filtrate to generate local mechanical forces that expand the subpodocyte space forming pseudocysts, promote podocyte detachment and subsequent segmental sclerosis.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Animais , Modelos Animais de Doenças , Membrana Basal Glomerular , Glomerulosclerose Segmentar e Focal/patologia , Nefropatias/patologia , Camundongos , Podócitos/patologia , Esclerose/patologia
7.
Kidney Int ; 99(3): 620-631, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33137336

RESUMO

Previously, we found that mild tubulointerstitial injury sensitizes glomeruli to subsequent injury. Here, we evaluated whether stabilization of hypoxia-inducible factor-α (HIF-α), a key regulator of tissue response to hypoxia, ameliorates tubulointerstitial injury and impact on subsequent glomerular injury. Nep25 mice, which express the human CD25 receptor on podocytes under control of the nephrin promotor and develop glomerulosclerosis when a specific toxin is administered were used. Tubulointerstitial injury, evident by week two, was induced by folic acid, and mice were treated with an HIF stabilizer, dimethyloxalylglycine or vehicle from week three to six. Uninephrectomy at week six assessed tubulointerstitial fibrosis. Glomerular injury was induced by podocyte toxin at week seven, and mice were sacrificed ten days later. At week six tubular injury markers normalized but with patchy collagen I and interstitial fibrosis. Pimonidazole staining, a hypoxia marker, was increased by folic acid treatment compared to vehicle while dimethyloxalylglycine stimulated HIF-2α expression and attenuated tubulointerstitial hypoxia. The hematocrit was increased by dimethyloxalylglycine along with downstream effectors of HIF. Tubular epithelial cell injury, inflammation and interstitial fibrosis were improved after dimethyloxalylglycine, with further reduced mortality, interstitial fibrosis, and glomerulosclerosis induced by specific podocyte injury. Thus, our findings indicate that hypoxia contributes to tubular injury and consequent sensitization of glomeruli to injury. Hence, restoring HIFs may blunt this adverse crosstalk of tubules to glomeruli.


Assuntos
Nefropatias , Podócitos , Animais , Fibrose , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Nefropatias/patologia , Glomérulos Renais/patologia , Camundongos
8.
Am J Physiol Renal Physiol ; 318(3): F741-F753, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068458

RESUMO

Glomerular parietal epithelial cell (PEC) activation, as revealed by de novo expression of CD44 and cell migration toward the injured filtration barrier, is a hallmark of podocyte injury-driven focal segmental glomerulosclerosis (FSGS). However, the signaling pathway that mediates activation of PECs in response to podocyte injury is unknown. The present study focused on CD44 signaling, particularly the roles of two CD44-related chemokines, migration inhibitory factor (MIF) and stromal cell-derived factor 1 (SDF1), and their common receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), in the NEP25/LMB2 mouse podocyte-toxin model of FSGS. In the early phase of the disease, CD44-positive PECs were locally evident on the opposite side of the intact glomerular tuft and subsequently increased in the vicinity of synechiae with podocyte loss. Expression of MIF and SDF1 was first increased in injured podocytes and subsequently transferred to activated PECs expressing CD44 and CXCR4. In an immortalized mouse PEC (mPEC) line, recombinant MIF and SDF1 (rMIF and rSDF1, respectively) individually increased CD44 and CXCR4 mRNA and protein levels. rMIF and rSDF1 stimulated endogenous MIF and SDF1 production. rMIF- and rSDF1-induced mPEC migration was suppressed by CD44 siRNA. However, MIF and SDF1 inhibitors failed to show any impact on proteinuria, podocyte number, and CD44 expression in NEP25/LMB2 mice. Our data suggest that injured podocytes upregulate MIF and SDF1 that stimulate CD44 expression and CD44-mediated migration, which is enhanced by endogenous MIF and SDF1 in PECs. This biphasic expression pattern of the chemokine-CD44 axis in podocytes and PECs may be a novel mechanism of "podocyte-PEC cross-talk" signaling underlying podocyte injury-driven FSGS.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Podócitos/fisiologia , Receptores CXCR4/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Cápsula Glomerular , Movimento Celular , Células Cultivadas , Quimiocina CXCL12/genética , Antígenos de Histocompatibilidade Classe II/genética , Receptores de Hialuronatos/genética , Camundongos , Camundongos Endogâmicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Receptores CXCR4/genética , Regulação para Cima
9.
Biochem Biophys Res Commun ; 524(3): 636-642, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32029271

RESUMO

Hyperphosphatemia is a common complication in patients with advanced chronic kidney disease (CKD) as well as an increased risk of cardiovascular mortality; however, the molecular mechanisms of phosphate-mediated kidney injury are largely unknown. Autophagy is a lysosomal degradation system, which plays protective roles against kidney diseases. Here, we studied the role of autophagy in kidney proximal tubular cells (PTECs) during phosphate overload. Temporal cessation of autophagy in drug-induced PTEC-specific autophagy-deficient mice that were fed high phosphate diet induced mild cytosolic swelling and an accumulation of SQSTM1/p62-and ubiquitin-positive protein aggregates in PTECs, indicating that phosphate overload requires enhanced autophagic activity for the degradation of increasing substrate. Morphological and biochemical analysis demonstrated that high phosphate activates mitophagy in PTECs in response to oxidative stress. PTEC-specific autophagy-deficient mice receiving heminephrectomy and autophagy-deficient cultured PTECs exhibited mitochondrial dysfunction, increased reactive oxygen species production, and reduced ATP production in response to phosphate overload, suggesting that high phosphate-induced autophagy counteracts mitochondrial injury and maintains cellular bioenergetics in PTECs. Thus, potentiating autophagic activity could be a therapeutic option for suppressing CKD progression during phosphate overload.


Assuntos
Autofagia , Rim/patologia , Mitocôndrias/patologia , Fosfatos/toxicidade , Animais , Autofagia/efeitos dos fármacos , Citoproteção , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Túbulos Renais Proximais/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitofagia
10.
J Am Soc Nephrol ; 30(6): 929-945, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31040190

RESUMO

BACKGROUND: Evidence of a protective role of autophagy in kidney diseases has sparked interest in autophagy as a potential therapeutic strategy. However, understanding how the autophagic process is altered in each disorder is critically important in working toward therapeutic applications. METHODS: Using cultured kidney proximal tubule epithelial cells (PTECs) and diabetic mouse models, we investigated how autophagic activity differs in type 1 versus type 2 diabetic nephropathy. We explored nutrient signals regulating starvation-induced autophagy in PTECs and used autophagy-monitoring mice and PTEC-specific autophagy-deficient knockout mice to examine differences in autophagy status and autophagy's role in PTECs in streptozotocin (STZ)-treated type 1 and db/db type 2 diabetic nephropathy. We also examined the effects of rapamycin (an inhibitor of mammalian target of rapamycin [mTOR]) on vulnerability to ischemia-reperfusion injury. RESULTS: Administering insulin or amino acids, but not glucose, suppressed autophagy by activating mTOR signaling. In db/db mice, autophagy induction was suppressed even under starvation; in STZ-treated mice, autophagy was enhanced even under fed conditions but stagnated under starvation due to lysosomal stress. Using knockout mice with diabetes, we found that, in STZ-treated mice, activated autophagy counteracts mitochondrial damage and fibrosis in the kidneys, whereas in db/db mice, autophagic suppression jeopardizes kidney even in the autophagy-competent state. Rapamycin-induced pharmacologic autophagy produced opposite effects on ischemia-reperfusion injury in STZ-treated and db/db mice. CONCLUSIONS: Autophagic activity in PTECs is mainly regulated by insulin. Consequently, autophagic activity differs in types 1 and 2 diabetic nephropathy, which should be considered when developing strategies to treat diabetic nephropathy by modulating autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/prevenção & controle , Lisossomos/metabolismo , Sirolimo/farmacologia , Aminoácidos/farmacologia , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Insulina/farmacologia , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sensibilidade e Especificidade , Estreptozocina/farmacologia
11.
Am J Physiol Renal Physiol ; 316(2): F241-F252, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379099

RESUMO

Podocyte injury is a key event for progressive renal failure. We have previously established a mouse model of inducible podocyte injury (NEP25) that progressively develops glomerulosclerosis after immunotoxin injection. We performed polysome analysis of intact and injured podocytes utilizing the NEP25 and RiboTag transgenic mice, in which a hemagglutinin tag is attached to ribosomal protein L22 selectively in podocytes. Podocyte-specific polysomes were successfully obtained by immunoprecipitation with an antihemagglutinin antibody from glomerular homogenate and analyzed using a microarray. Compared with glomerular cells, 353 genes were highly expressed and enriched in podocytes; these included important podocyte genes and also heretofore uncharacterized genes, such as Dach1 and Foxd2. Podocyte injury by immunotoxin induced many genes to be upregulated, including inflammation-related genes despite no infiltration of inflammatory cells in the glomeruli. MafF and Egr-1, which structurally have the potential to antagonize MafB and WT1, respectively, were rapidly and markedly increased in injured podocytes before MafB and WT1 were decreased. We demonstrated that Maff and Egr1 knockdown increased the MafB targets Nphs2 and Ptpro and the WT1 targets Ptpro, Nxph3, and Sulf1, respectively. This indicates that upregulated MafF and Egr-1 may promote deterioration of podocytes by antagonizing MafB and WT1. Our systematic microarray study of the heretofore undescribed behavior of podocyte genes may open new insights into the understanding of podocyte pathophysiology.


Assuntos
Perfilação da Expressão Gênica/métodos , Glomerulosclerose Segmentar e Focal/genética , Análise de Sequência com Séries de Oligonucleotídeos , Podócitos/metabolismo , Polirribossomos/genética , Insuficiência Renal Crônica/genética , Transcriptoma , Animais , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Subunidade alfa de Receptor de Interleucina-2/genética , Proteínas de Membrana/genética , Camundongos Transgênicos , Fenótipo , Podócitos/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
12.
Genes Cells ; 23(7): 546-556, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845705

RESUMO

Glomerular podocytes in the kidney originate from columnar epithelial cells possessing tight junctions. During podocyte differentiation, tight junctions are replaced by slit diaphragms, which are formed between foot processes and function as a blood filtration barrier. Although the expression of most tight junction components is suppressed during podocyte differentiation, several components, including ZO-1 and ZO-2, are consistently expressed. We recently showed that podocyte-specific deletion of ZO-1 gene impaired slit diaphragm formation, leading to proteinuria and glomerular sclerosis. Here, we address the relevance of ZO-2, whose sequence is highly similar to ZO-1, in the maintenance of the structure and function of podocytes. In glomerular development, the spatiotemporal expression of ZO-2 was similar to that of ZO-1 until the capillary loop stage. Subsequently, the distribution patterns of ZO-1 and ZO-2 diverged at the maturation stage, when slit diaphragms are formed. This divergence could partly rely on the ability of ZO-2 to interact with the slit diaphragm membrane proteins. Podocyte-specific deletion of the ZO-2 gene did not cause overt defects; however, double knockout of ZO-1 and ZO-2 genes accelerated the defects observed in ZO-1 knockout mice. These results suggest that ZO-2 plays supportive roles in the ZO-1-dependent regulation of podocyte filtration barrier.


Assuntos
Podócitos/metabolismo , Proteína da Zônula de Oclusão-1/fisiologia , Proteína da Zônula de Oclusão-2/fisiologia , Animais , Células COS , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Junções Intercelulares , Rim/metabolismo , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Podócitos/fisiologia , Junções Íntimas/genética , Junções Íntimas/metabolismo , Junções Íntimas/fisiologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-2/genética , Proteína da Zônula de Oclusão-2/metabolismo
13.
Nephrol Dial Transplant ; 33(1): 26-33, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992095

RESUMO

BACKGROUND: Heparan sulphate proteoglycan (HSPG) is present in the glomerular basement membrane (GBM) and is thought to play a major role in the glomerular charge barrier. Reductions and structural alterations of HSPG are observed in different types of kidney diseases accompanied by proteinuria. However, their causal relations remain unknown. METHODS: We generated podocyte-specific exostosin-like 3 gene (Extl3) knockout mice (Extl3KO) using a Cre-loxP recombination approach. A reduction of HSPG was expected in the GBM of these mice, because EXTL3 is involved in its synthesis. Mice were separated into three groups, according to the loads on the glomeruli: a high-protein diet group, a high-protein and high-sodium diet group and a hyperglycaemic group induced by streptozotocin treatment in addition to maintenance on a high-protein and high-sodium diet. The urinary albumin:creatinine ratio was measured at 7, 11, 15 and 19 weeks of age. Renal histology was also investigated. RESULTS: Podocyte-specific expression of Cre recombinase was detected by immunohistochemistry. Moreover, immunofluorescent staining demonstrated a significant reduction of HSPG in the GBM. Electron microscopy showed irregularities in the GBM and effacement of the foot processes in Extl3KO. The values of the urinary albumin:creatinine ratio were within the range of microalbuminuria in all groups and did not significantly differ between the control mice and Extl3KO. CONCLUSIONS: The reduction of HSPG in the GBM did not augment urinary albumin excretion. HSPG's anionic charge appears to contribute little to the glomerular charge barrier.


Assuntos
Albuminas/metabolismo , Membrana Basal Glomerular/metabolismo , Proteoglicanas de Heparan Sulfato/deficiência , Glomérulos Renais/metabolismo , N-Acetilglucosaminiltransferases/fisiologia , Podócitos/metabolismo , Urinálise , Animais , Masculino , Camundongos , Camundongos Knockout
14.
Exp Cell Res ; 352(2): 265-272, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28223138

RESUMO

Foxc1 and Foxc2 (Foxc1/2) are transcription factors involved in many biological processes. In adult kidneys, expression of Foxc1/2 is confined to the glomerular epithelial cells, i.e., podocytes. To bypass embryonic lethality of Foxc1/2 null mice, mice ubiquitously expressing inducible-Cre (ROSA26-CreERT2) or mice expressing Cre in podocytes (Nephrin-Cre) were mated with floxed-Foxc1 and floxed-Foxc2 mice. The CreERT2 was activated in adult mice by administrations of tamoxifen. Eight weeks after tamoxifen treatment, ROSA26-CreERT2; Foxc1+/flox; Foxc2flox/flox mice developed microalbuminuria, while ROSA26-Cre ERT2; Foxc1flox/flox; Foxc2+/flox mice had no microalbuminuria. The kidneys of conditional-Foxc1/2 null mice showed proteinaceous casts, protein reabsorption droplets in tubules and huge vacuoles in podocytes, indicating severe podocyte injury and massive proteinuria. Comparison of gene expression profiles revealed that Foxc1/2 maintain expression of genes necessary for podocyte function such as podocin and Cxcl12. In addition, mice with an innate podocyte-specific deletion of Foxc1/2 by Nephrin-Cre develop similar podocyte injury. These results demonstrate dose-dependence of Foxc1/2 gene in maintaining the podocyte with a more critical role for Foxc2 than Foxc1 and a critical role of Foxc1/2 in regulating expression of genes that maintain podocyte integrity.


Assuntos
Albuminúria/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Animais , Células Cultivadas , Quimiocina CXCL12/metabolismo , Fatores de Transcrição Forkhead/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/citologia , Glomérulos Renais/patologia , Proteínas de Membrana/metabolismo , Camundongos , Podócitos/patologia
15.
Clin Exp Nephrol ; 22(2): 266-274, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28776225

RESUMO

BACKGROUND: Glomerular podocyte-derived vascular endothelial growth factor (VEGF) is indispensable for the migration and proliferation of glomerular endothelial cells. In contrast, podocyte-specific Vegf overexpression leads to the collapse of glomerular tufts; however, the mechanisms underlying this outcome have not yet been reported. METHODS: To further clarify the effects of elevated levels of Vegf expression on glomerular cells, we established a dual transgenic mouse line in which Vegf was exclusively and inducibly expressed in podocytes under the control of the "Tet-on system" (Podocin-rtTA/TetO-Vegf164 mice). RESULTS: Macroscopic and microscopic examination of Podocin-rtTA/TetO-Vegf164 animals following Vegf induction identified the presence of prominent red bloody spots. In addition, the endothelial cell number was increased along with enlargement of the subendothelial spaces. We also observed impaired endothelial fenestrations and aberrant plasmalemmal vesicle-associated protein-1 (PV-1) expression. In contrast, the mesangial cell number markedly decreased, resulting in a glomerular tuft intussusceptive splitting defect. Furthermore, whereas platelet-derived growth factor-B (PDGF-B) expression in the glomerular cells of Podocin-rtTA/TetO-Vegf164 mice was not decreased, phospho-PDGF receptor immunoreactivity in the mesangial cells was significantly decreased when compared to wild-type animals. CONCLUSION: Taken together, the results of this study indicated that the upregulation of podocyte VEGF decreased the number of mesangial cells, likely owing to inhibition of PDGF-B-mediated signaling.


Assuntos
Diferenciação Celular , Células Endoteliais/metabolismo , Células Mesangiais/metabolismo , Podócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Proteínas de Transporte/metabolismo , Células Endoteliais/patologia , Genótipo , Linfocinas/metabolismo , Proteínas de Membrana/metabolismo , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Podócitos/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
16.
J Am Soc Nephrol ; 28(5): 1534-1551, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27932476

RESUMO

Excessive fat intake contributes to the progression of metabolic diseases via cellular injury and inflammation, a process termed lipotoxicity. Here, we investigated the role of lysosomal dysfunction and impaired autophagic flux in the pathogenesis of lipotoxicity in the kidney. In mice, a high-fat diet (HFD) resulted in an accumulation of phospholipids in enlarged lysosomes within kidney proximal tubular cells (PTCs). In isolated PTCs treated with palmitic acid, autophagic degradation activity progressively stagnated in association with impaired lysosomal acidification and excessive lipid accumulation. Pulse-chase experiments revealed that the accumulated lipids originated from cellular membranes. In mice with induced PTC-specific ablation of autophagy, PTCs of HFD-mice exhibited greater accumulation of ubiquitin-positive protein aggregates normally removed by autophagy than did PTCs of mice fed a normal diet. Furthermore, HFD-mice had no capacity to augment autophagic activity upon another pathologic stress. Autophagy ablation also exaggerated HFD-induced mitochondrial dysfunction and inflammasome activation. Moreover, renal ischemia-reperfusion induced greater injury in HFD-mice than in mice fed a normal diet, and ablation of autophagy further exacerbated this effect. Finally, we detected similarly enhanced phospholipid accumulation in enlarged lysosomes and impaired autophagic flux in the kidneys of obese patients compared with nonobese patients. These findings provide key insights regarding the pathophysiology of lipotoxicity in the kidney and clues to a novel treatment for obesity-related kidney diseases.


Assuntos
Autofagia/fisiologia , Dieta Hiperlipídica/efeitos adversos , Nefropatias/etiologia , Rim/metabolismo , Metabolismo dos Lipídeos , Lisossomos/fisiologia , Animais , Autofagia/efeitos dos fármacos , Rim/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Ácido Palmítico/farmacologia
17.
Kidney Int ; 92(6): 1395-1403, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28709637

RESUMO

Chronic glomerular injury is associated with eventual development of tubulointerstitial fibrosis. Here we aimed to assess whether, and how, mild chronic tubulointerstitial injury affects glomeruli. For this, we generated mice expressing different toxin receptors, one on their proximal tubular epithelial cells (diphtheria toxin receptor [DTR]) and the other only on podocytes (human CD25 [IL-2R] driven by the nephrin promoter [Nep25]), allowing serial induction of tubule-specific and glomerular (podocyte)-specific injury, respectively. Six weeks after diphtheria toxin injection, mild interstitial fibrosis was found in Nep25+/DTR+, but not in Nep25+/DTR- mice. However, atubular glomeruli and neuronal nitric oxide synthase, a mediator of tubuloglomerular feedback, were higher in Nep25+/DTR+ than in DTR- mice and these atubular glomeruli had less podocyte density as assessed by WT-1 biomarker expression. Peritubular capillary density, hypoxia-inducible factor-1 and -2, and cyclooxygenase 2 expression were similar at week six in the two groups. At week seven, all mice were given the immunotoxin LMB-2, which binds to CD25 to induce podocyte injury. Ten days later, proteinuria, podocyte injury, and glomerulosclerosis were more severe in Nep25+/DTR+ than Nep25+/DTR- mice with more severe sclerosis in the tubule-connected glomeruli. This supports the concept that even mild preexisting tubulointerstitial injury sensitizes glomeruli to subsequent podocyte-specific injury. Thus, increased atubular glomeruli and abnormal tubuloglomerular feedback significantly contribute to the crosstalk between the tubulointerstitium and glomeruli.


Assuntos
Nefropatias/patologia , Glomérulos Renais/patologia , Túbulos Renais/patologia , Animais , Anticorpos Monoclonais/toxicidade , Toxina Diftérica/toxicidade , Modelos Animais de Doenças , Exotoxinas/toxicidade , Fibrose , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Nefropatias/induzido quimicamente , Nefropatias/urina , Glomérulos Renais/citologia , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/irrigação sanguínea , Túbulos Renais/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Regiões Promotoras Genéticas/genética , Proteinúria/induzido quimicamente , Proteinúria/patologia , Proteinúria/urina , Esclerose
18.
Mamm Genome ; 27(1-2): 62-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26542959

RESUMO

Foxc2 is a single-exon gene and a key regulator in development of multiple organs, including kidney. To avoid embryonic lethality of conventional Foxc2 knockout mice, we conditionally deleted Foxc2 in kidneys. Conditional targeting of a single-exon gene involves the large floxed gene segment spanning from promoter region to coding region to avoid functional disruption of the gene by the insertion of a loxP site. Therefore, in ES cell clones surviving a conventional single-selection, e.g., neomycin-resistant gene (neo) alone, homologous recombination between the long floxed segment and target genome results in a high incidence of having only one loxP site adjacent to the selection marker. To avoid this limitation, we employed a double-selection system. We generated a Foxc2 targeting construct in which a floxed segment contained 4.6 kb mouse genome and two different selection marker genes, zeocin-resistant gene and neo, that were placed adjacent to each loxP site. After double-selection by zeocin and neomycin, 72 surviving clones were screened that yielded three correctly targeted clones. After floxed Foxc2 mice were generated by tetraploid complementation, we removed the two selection marker genes by a simultaneous-single microinjection of expression vectors for Dre and Flp recombinases into in vitro-fertilized eggs. To delete Foxc2 in mouse kidneys, floxed Foxc2 mice were mated with Pax2-Cre mice. Newborn Pax2-Cre; Foxc2(loxP/loxP) mice showed kidney hypoplasia and glomerular cysts. These results indicate the feasibility of generating floxed Foxc2 mice by double-selection system and simultaneous removal of selection markers with a single microinjection.


Assuntos
Alelos , Fatores de Transcrição Forkhead/deficiência , Efeito Fundador , Rim/metabolismo , Camundongos Knockout/genética , Insuficiência Renal/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bleomicina/farmacologia , Células-Tronco Embrionárias , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Éxons , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Engenharia Genética , Recombinação Homóloga , Rim/patologia , Camundongos , Microinjeções , Neomicina/farmacologia , Fases de Leitura Aberta , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Recombinases/genética , Recombinases/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Seleção Genética , Transfecção , Zigoto/efeitos dos fármacos , Zigoto/metabolismo
19.
Am J Pathol ; 185(8): 2118-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26072030

RESUMO

Intracapillary foam cell infiltration with podocyte alterations is a characteristic pathology of focal segmental glomerulosclerosis (FSGS). We investigated the possible role of podocyte injury in glomerular macrophage and foam cell infiltration in a podocyte-selective injury model (NEP25 mice) and hypercholesterolemic model [low-density lipoprotein receptor deficiency (LDLR(-/-)) mice] with doxorubicin-induced nephropathy. Acute podocyte selective injury alone failed to induce glomerular macrophages in the NEP25 mice. However, in the doxorubicin-treated hypercholesterolemic LDLR(-/-) mice, glomerular macrophages/foam cells significantly increased and were accompanied by lipid deposition and the formation and ingestion of oxidized phospholipids (oxPLs). Glomerular macrophages significantly correlated with the amount of glomerular oxPL. The NEP25/LDLR(-/-) mice exhibited severe hypercholesterolemia, glomerular lipid deposition, and renal dysfunction. Imaging mass spectrometry revealed that a major component of oxidized low-density lipoprotein, lysophosphatidylcholine 16:0 and 18:0, was present only in the glomeruli of NEP25/LDLR(-/-) mice. Lysophosphatidylcholine 16:0 stimulated mesangial cells and macrophages, and lysophosphatidylcholine 18:0 stimulated glomerular endothelial cells to express adhesion molecules and chemokines, promoting macrophage adhesion and migration in vitro. In human FSGS, glomerular macrophage-derived foam cells contained oxPLs accompanied by the expression of chemokines in the tuft. In conclusion, glomerular lipid modification represents a novel pathology by podocyte injury, promoting FSGS. Podocyte injury-driven lysophosphatidylcholine de novo accelerated glomerular macrophage-derived foam cell infiltration via lysophosphatidylcholine-mediated expression of adhesion molecules and chemokines in glomerular resident cells.


Assuntos
Células Espumosas/patologia , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Peroxidação de Lipídeos/fisiologia , Podócitos/patologia , Animais , Movimento Celular/fisiologia , Modelos Animais de Doenças , Células Espumosas/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Glomérulos Renais/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
20.
Cells Tissues Organs ; 201(5): 380-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193493

RESUMO

Foxc1 and Foxc2 play key roles in mouse development. Foxc1 mutant mice develop duplex kidneys with double ureters, and lack calvarial and sternal bones. Foxc2 null mice have been reported to have glomerular abnormalities in the kidney and axial skeletal anomalies. Expression patterns of Foxc1 and Foxc2 overlap extensively and are believed to have interactive roles. However, cooperative roles of these factors in glomerular and skeletal development are unknown. Therefore, we examined the kidneys and skeleton of mice that were double heterozygous for Foxc1 and Foxc2. Double heterozygotes were generated by mating single heterozygotes for Foxc1 and Foxc2. Newborn double heterozygous mice showed many anomalies in the kidney and urinary tract resembling Foxc1 phenotypes, including duplex kidneys, double ureters, hydronephrosis and mega-ureter. Some mice had hydronephrosis alone. In addition to these macroscopic anomalies, some mice had abnormal glomeruli and disorganized glomerular capillaries observed in Foxc2 phenotypes. Interestingly, these mice also showed glomerular cysts not observed in the single-gene knockout of either Foxc1 or Foxc2 but observed in conditional knockout of Foxc2 in the kidney. Serial section analysis revealed that all cystic glomeruli were connected to proximal tubules, precluding the possibility of atubular glomeruli resulting in cyst formation. Dorsally opened vertebral arches and malformations of sternal bones in the double heterozygotes were phenotypes similar to Foxc1 null mice. Absent or split vertebral bodies in the double heterozygotes were phenotypes similar to Foxc2 null mice, whilst hydrocephalus noted in the Foxc1 phenotype was not observed. Thus, Foxc1 and Foxc2 have a role in kidney and axial skeleton development. These transcription factors might interact in the regulation of the embryogenesis of these organs.


Assuntos
Osso e Ossos/patologia , Fatores de Transcrição Forkhead/metabolismo , Rim/patologia , Animais , Osso e Ossos/anormalidades , Osso e Ossos/metabolismo , Coristoma/patologia , Heterozigoto , Rim/anormalidades , Rim/metabolismo , Doenças Renais Císticas/patologia , Glomérulos Renais/patologia , Túbulos Renais/patologia , Células Mesangiais/patologia , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa