Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(12): 3920-3928, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388942

RESUMO

Black spruce trees growing on warming permafrost lean in all directions due to soil movement, forming a "drunken" forest. Two hypothetical drivers of drunken forest development are (i) loosening of the soil foundation induced by permafrost degradation in warm summers and (ii) mound rising induced by freezing soil in winter. However, no evidence has previously clarified whether recent tree leaning is related to climate warming or is part of a natural hummock formation process. Here, we provide evidence that tree leaning and soil hummock formation have accelerated due to climate warming. We find that trees' leaning events synchronize with the development of soil hummocks as recorded in tree rings with lignin-rich cells. Tree leaning is caused by mound rising in winter due to refreezing of soil following deep thaws in summer, rather than by loosening of the soil foundation in summer. Hummock formation shifted from periodic events before 1960 to continuous mound rising in the warmer succeeding 50 years. Although soil change is generally a slow process, recent permafrost warming has induced rapid hummock formation, which threatens the stability of drunken forests and organic carbon in soil hummocks based on shallow permafrost table.


Assuntos
Pergelissolo , Picea , Clima , Florestas , Solo
2.
Glob Chang Biol ; 23(12): 5179-5188, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28585765

RESUMO

Circumboreal forest ecosystems are exposed to a larger magnitude of warming in comparison with the global average, as a result of warming-induced environmental changes. However, it is not clear how tree growth in these ecosystems responds to these changes. In this study, we investigated the sensitivity of forest productivity to climate change using ring width indices (RWI) from a tree-ring width dataset accessed from the International Tree-Ring Data Bank and gridded climate datasets from the Climate Research Unit. A negative relationship of RWI with summer temperature and recent reductions in RWI were typically observed in continental dry regions, such as inner Alaska and Canada, southern Europe, and the southern part of eastern Siberia. We then developed a multiple regression model with regional meteorological parameters to predict RWI, and then applied to these models to predict how tree growth will respond to twenty-first-century climate change (RCP8.5 scenario). The projections showed a spatial variation and future continuous reduction in tree growth in those continental dry regions. The spatial variation, however, could not be reproduced by a dynamic global vegetation model (DGVM). The DGVM projected a generally positive trend in future tree growth all over the circumboreal region. These results indicate that DGVMs may overestimate future wood net primary productivity (NPP) in continental dry regions such as these; this seems to be common feature of current DGVMs. DGVMs should be able to express the negative effect of warming on tree growth, so that they simulate the observed recent reduction in tree growth in continental dry regions.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Alaska , Canadá , Europa (Continente) , Estações do Ano , Sibéria , Temperatura
3.
Proc Natl Acad Sci U S A ; 107(4): 1447-51, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080600

RESUMO

The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.


Assuntos
Biomassa , Botânica/métodos , Gases/análise , Transpiração Vegetal , Plântula/química , Árvores/química , Gases/metabolismo , Plântula/fisiologia , Árvores/fisiologia
4.
Front Plant Sci ; 12: 769710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868167

RESUMO

Permafrost forests play an important role in the global carbon budget due to the huge amounts of carbon stored below ground in these ecosystems. Although fine roots are considered to be a major pathway of belowground carbon flux, separate contributions of overstory trees and understory shrubs to fine root dynamics in these forests have not been specifically characterized in relation to permafrost conditions, such as active layer thickness. In this study, we investigated fine root growth and morphology of trees and understory shrubs using ingrowth cores with two types of moss substrates (feather- and Sphagnum mosses) in permafrost black spruce (Picea mariana) stands along a north-facing slope in Interior Alaska, where active layer thickness varied substantially. Aboveground biomass, litterfall production rate, and fine root mass were also examined. Results showed that aboveground biomass, fine root mass, and fine root growth of black spruce trees tended to decrease downslope, whereas those of understory Ericaceae shrubs increased. Belowground allocation (e.g., ratio of fine root growth/leaf litter production) increased downslope in both of black spruce and understory plants. These results suggested that, at a lower slope, belowground resource availability was lower than at upper slope, but higher light availability under open canopy seemed to benefit the growth of the understory shrubs. On the other hand, understory shrubs were more responsive to the moss substrates than black spruce, in which Sphagnum moss substrates increased fine root growth of the shrubs as compared with feather moss substrates, whereas the effect was unclear for black spruce. This is probably due to higher moisture contents in Sphagnum moss substrates, which benefited the growth of small diameter (high specific root length) fine roots of understory shrubs. Hence, the contribution of understory shrubs to fine root growth was greater at lower slope than at upper slope, or in Sphagnum than in feather-moss substrates in our study site. Taken together, our data show that fine roots of Ericaceae shrubs are a key component in belowground carbon flux at permafrost black spruce forests with shallow active layer and/or with Sphagnum dominated forest floor.

5.
Nat Commun ; 5: 4270, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24967601

RESUMO

The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.


Assuntos
Briófitas , Ciclo do Carbono , Ecossistema , Fotossíntese , Taiga , Carbono , Dióxido de Carbono , Modelos Biológicos , Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa