Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nucleic Acids Res ; 51(14): 7236-7253, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37334871

RESUMO

Genomic imprinting at the mouse Igf2/H19 locus is controlled by the H19 ICR, within which paternal allele-specific DNA methylation originating in sperm is maintained throughout development in offspring. We previously found that a 2.9 kb transgenic H19 ICR fragment in mice can be methylated de novo after fertilization only when paternally inherited, despite its unmethylated state in sperm. When the 118 bp sequence responsible for this methylation in transgenic mice was deleted from the endogenous H19 ICR, the methylation level of its paternal allele was significantly reduced after fertilization, suggesting the activity involving this 118 bp sequence is required for methylation maintenance at the endogenous locus. Here, we determined protein binding to the 118 bp sequence using an in vitro binding assay and inferred the binding motif to be RCTG by using a series of mutant competitors. Furthermore, we generated H19 ICR transgenic mice with a 5-bp substitution mutation that disrupts the RCTG motifs within the 118 bp sequence, and observed loss of methylation from the paternally inherited transgene. These results indicate that imprinted methylation of the H19 ICR established de novo during the post-fertilization period involves binding of specific factors to distinct sequence motifs within the 118 bp sequence.


Assuntos
Impressão Genômica , Animais , Masculino , Camundongos , Metilação de DNA/genética , Fertilização , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos Endogâmicos ICR , Camundongos Transgênicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sêmen/metabolismo , Sequências Reguladoras de Ácido Nucleico
2.
Hum Mol Genet ; 29(22): 3646-3661, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33258474

RESUMO

Monoallelic gene expression at the Igf2/H19 locus is controlled by paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) that is established during spermatogenesis. We demonstrated that the H19 ICR fragment in transgenic mice acquires allele-specific methylation only after fertilization, which is essential for maintaining its allelic methylation during early embryogenesis. We identified a DNA element required for establishing postfertilization methylation within a 118 bp (m118) region. A previously generated knock-in mouse whose endogenous H19 ICR was substituted with the human H19 ICR (hIC1; 4.8 kb) sequence revealed that the hIC1 sequence was partially methylated in sperm, although this methylation was lost by the blastocyst stage, which we assume is due to a lack of an m118-equivalent sequence in the hIC1 transgene. To identify a cis sequence involved in postfertilization methylation within the hIC1 region, we generated three transgenic mouse lines (TgM): one carrying an 8.8 kb hIC1 sequence joined to m118 (hIC1+m118), one with the 8.8 kb hIC1 and one with the 5.8 kb hIC1 sequence joined to m118 (hIC1-3'+m118). We found that the hIC1-3' region was resistant to de novo DNA methylation throughout development. In contrast, the 5' portion of the hIC1 (hIC1-5') in both hIC1+m118 and hIC1 TgM were preferentially methylated on the paternal allele only during preimplantation. As DNA methylation levels were higher in hIC1+m118, the m118 sequence could also induce imprinted methylation of the human sequence. Most importantly, the hIC1-5' sequence appears to possess an activity equivalent to that of m118.


Assuntos
Metilação de DNA/genética , Impressão Genômica/genética , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Espermatogênese/genética , Alelos , Animais , Fator de Ligação a CCCTC/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/patologia
3.
Biochem Biophys Res Commun ; 505(1): 36-39, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236981

RESUMO

Several G protein-coupled receptors are present in lipid rafts. We have shown that most of the P2Y2 receptor (P2Y2R) protein is fractionated into lipid rafts in COS 7 cells. In the same cells, about 25-30% of the bradykinin B2 receptor (B2R) protein is also fractionated into lipid rafts. When both P2Y2R and B2R are co-expressed, the distribution of P2Y2R remained unchanged, but more B2R shifted into the raft fraction. This indicates that the interaction between both receptors recruited B2R into the lipid rafts. After 15 min of UTP stimulation, both receptors almost completely disappeared from the cell surface by endocytosis as observed with a confocal fluorescence microscope. Furthermore, with bradykinin stimulation for 15 min, portions of both receptors disappeared from the cell surface and were endocytosed. As we reported previously with both CHO-K1 cells and HEK 293 cells, continuous stimulation of COS7 cells with GT1b and CSC resulted in the disappearance of both P2Y2R and B2R from the cell membrane surface. Thus, both P2Y2R and B2R migrate into membrane rafts and are endocytosed in parallel with signal crosstalk, clearly indicating that both closely interact on membrane rafts. The P2Y2R N-glycosylation deficient mutant does not migrate to the cell surface. It remains predominantly in the endoplasmic reticulum and is fractionated into raft fractions. In the presence of this glycosylation mutant, most of B2R remains in the endoplasmic reticulum, and is fractionated into the raft fraction. These findings demonstrate that in the membrane rafts of the endoplasmic reticulum, both receptors are already closely associated, and B2R shifts into the rafts by affinity with P2Y2R.


Assuntos
Microdomínios da Membrana/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Bradicinina/metabolismo , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Endocitose , Humanos , Ligação Proteica , Receptor B2 da Bradicinina/genética , Receptores Purinérgicos P2Y2/genética , Uridina Trifosfato/metabolismo
4.
Development ; 142(22): 3833-44, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26417043

RESUMO

Genomic imprinting is a major monoallelic gene expression regulatory mechanism in mammals, and depends on gamete-specific DNA methylation of specialized cis-regulatory elements called imprinting control regions (ICRs). Allele-specific DNA methylation of the ICRs is faithfully maintained at the imprinted loci throughout development, even in early embryos where genomes undergo extensive epigenetic reprogramming, including DNA demethylation, to acquire totipotency. We previously found that an ectopically introduced H19 ICR fragment in transgenic mice acquired paternal allele-specific methylation in the somatic cells of offspring, whereas it was not methylated in sperm, suggesting that its gametic and postfertilization modifications were separable events. We hypothesized that this latter activity might contribute to maintenance of the methylation imprint in early embryos. Here, we demonstrate that methylation of the paternally inherited transgenic H19 ICR commences soon after fertilization in a maternal DNMT3A- and DNMT3L-dependent manner. When its germline methylation was partially obstructed by insertion of insulator sequences, the endogenous paternal H19 ICR also exhibited postfertilization methylation. Finally, we refined the responsible sequences for this activity in transgenic mice and found that deletion of the 5' segment of the endogenous paternal H19 ICR decreased its methylation after fertilization and attenuated Igf2 gene expression. These results demonstrate that this segment of the H19 ICR is essential for its de novo postfertilization DNA methylation, and that this activity contributes to the maintenance of imprinted methylation at the endogenous H19 ICR during early embryogenesis.


Assuntos
Metilação de DNA/fisiologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Impressão Genômica/fisiologia , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases , Southern Blotting , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Primers do DNA/genética , Feminino , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
5.
Biochem Biophys Res Commun ; 485(2): 427-431, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28209512

RESUMO

P2Y2 receptor (P2Y2R) is a G-protein-coupled receptor (GPCR) that couples with Gαq/11 and is stimulated by ATP and UTP. P2Y2R is involved in pain, proinflammatory changes, and blood pressure control. Some GPCRs are localized in lipid rafts for interaction with other signaling molecules. In this study, we prepared N-glycan-deficient mutants by mutating the two consensus Asn residues for N-glycosylation to Gln to examine intracellular localization and association with lipid rafts. Western blotting of the wild type (WT) protein and mutants (N9Q, N13Q, N9Q/N13Q) in COS-7 cells showed that both Asn residues were glycosylated in the WT. Fluorescent microscopy analysis showed that WT, N9Q and N13Q were expressed in the endoplasmic reticulum (ER), Golgi body, and cell membrane, but N9Q/N13Q was only found in the ER. WT, N9Q and N13Q moved from the cell surface to endosomes within 15 min after UTP stimulation. WT and the N9Q/N13Q glycosylation-deficient mutant appeared in the detergent insoluble membrane fraction, lipid raft. These findings suggest that P2Y2R is localized in lipid rafts in the ER during biosynthesis, and that N-glycosylation is required for subsequent expression in the cell membrane. In the presence of epoxomicin, a proteasome inhibitor, there was a significant increase in the level of N9Q/N13Q, which suggests that N-glycan-deficient P2Y2R undergoes proteasomal degradation.


Assuntos
Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Polissacarídeos/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Microscopia Confocal , Mutação , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Receptores Purinérgicos P2Y2/genética
6.
Hum Mol Genet ; 22(22): 4627-37, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23821645

RESUMO

Abnormal methylation at the maternally inherited H19 imprinted control region (H19 ICR) is one of the causative alterations leading to pathogenesis of Beckwith-Wiedemann syndrome (BWS). Recently, it was shown in human BWS patients, as well as mouse cell culture experiments, that Sox-Oct motifs (SOM) in the H19 ICR might play a role in protecting the maternal ICR from de novo DNA methylation. By grafting a mouse H19 ICR fragment into a human ß-globin yeast artificial chromosome (YAC) followed by analysis in transgenic mice (TgM), we showed previously that the fragment carried sufficient information to establish and maintain differential methylation after fertilization. To examine possible functions of the SOM in the establishment and/or maintenance of differential methylation, two kinds of YAC-TgM were generated in this study. In the ΔSOM TgM, carrying the mouse H19 ICR bearing an SOM deletion, a maternally inherited transgenic ICR exhibited increased levels of methylation around the deletion site, in comparison to the wild-type control, after implantation. In the λ + CTCF + b (LCb) TgM, carrying a 2.3 kb λ DNA fragment supplemented with the fragment b including the SOM and four CTCF binding sites, maternally and some of the paternally inherited LCb fragments were significantly less methylated when compared with a control λ + CTCF fragment that was supplemented only with additional CTCF sites; the λ + CTCF was substantially methylated regardless of the parent of origin after implantation. These results demonstrated that the SOM in the maternal H19 ICR was required for maintaining surrounding sequences in the unmethylated state in vivo.


Assuntos
Motivos de Aminoácidos , Síndrome de Beckwith-Wiedemann/genética , Cromossomos Artificiais de Levedura/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Região de Controle de Locus Gênico , Alelos , Animais , Fator de Ligação a CCCTC , Metilação de DNA , Feminino , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Linhagem , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Globinas beta/genética
7.
J Recept Signal Transduct Res ; 34(5): 401-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24734888

RESUMO

Renin is predominantly expressed in juxtaglomerular cells in the kidney and regulates blood pressure homeostasis. To examine possible in vivo functions of a mouse distal enhancer (mdE), we generated transgenic mice (TgM) carrying either wild-type or mdE-deficient renin BACs (bacterial artificial chromosome), integrated at the identical chromosomal site. In the kidneys of the TgM, the mdE contributed 80% to basal renin promoter activity. To test for possible physiological roles for the mdE, renin BAC transgenes were used to rescue the hypotensive renin-null mice. Interestingly, renal renin expression in the Tg(BAC):renin-null compound mice was indistinguishable between the wild-type and mutant BAC carriers. Surprisingly, however, the plasma renin activity and angiotensin I concentration in the mdE compound mutant mice were significantly lower than the same parameters in the control mice, and the mutants were consistently hypotensive, demonstrating that blood pressure homeostasis is regulated through transcriptional cis elements controlling renin activity.


Assuntos
Pressão Sanguínea/fisiologia , Elementos Facilitadores Genéticos/genética , Homeostase/fisiologia , Renina/genética , Renina/metabolismo , Ativação Transcricional/genética , Animais , Cromossomos Artificiais Bacterianos/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética
8.
Epigenetics Chromatin ; 17(1): 20, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840164

RESUMO

BACKGROUND: Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization. We also identified a 118-bp sequence within the H19 ICR that is responsible for post-fertilization imprinted methylation. Two mutations, one in the five RCTG motifs and the other a 36-bp deletion both in the 118-bp segment, caused complete and partial loss, respectively, of methylation following paternal transmission in each transgenic mouse. Interestingly, these mutations overlap with the binding site for the transcription factor Kaiso, which is reportedly involved in maintaining paternal methylation at the human H19 ICR (IC1) in cultured cells. In this study, we investigated if Kaiso regulates imprinted DNA methylation of the H19 ICR in vivo. RESULTS: Neither Kaiso deletion nor mutation of Kaiso binding sites in the 118-bp region affected DNA methylation of the mouse H19 ICR transgene. The endogenous mouse H19 ICR was methylated in a wild-type manner in Kaiso-null mutant mice. Additionally, the human IC1 transgene acquired imprinted DNA methylation after fertilization in the absence of Kaiso. CONCLUSIONS: Our results indicate that Kaiso is not essential for either post-fertilization imprinted DNA methylation of the transgenic H19 ICR in mouse or for methylation imprinting of the endogenous mouse H19 ICR.


Assuntos
Metilação de DNA , Impressão Genômica , RNA Longo não Codificante , Fatores de Transcrição , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Feminino , Sítios de Ligação , Camundongos Transgênicos , Proteínas Repressoras
9.
Epigenetics Chromatin ; 16(1): 7, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797774

RESUMO

BACKGROUND: Allele-specific methylation of the imprinting control region (ICR) is the molecular basis for the genomic imprinting phenomenon that is unique to placental mammals. We previously showed that the ICR at the mouse H19 gene locus (H19 ICR) was unexpectedly established after fertilization and not during spermatogenesis in transgenic mice (TgM), and that the same activity was essential for the maintenance of paternal methylation of the H19 ICR at the endogenous locus in pre-implantation embryos. To examine the universality of post-fertilization imprinted methylation across animal species or imprinted loci, we generated TgM with two additional sequences. RESULTS: The rat H19 ICR, which is very similar in structure to the mouse H19 ICR, unexpectedly did not acquire imprinted methylation even after fertilization, suggesting a lack of essential sequences in the transgene fragment. In contrast, the mouse IG-DMR, the methylation of which is acquired during spermatogenesis at the endogenous locus, did not acquire methylation in the sperm of TgM, yet became highly methylated in blastocysts after fertilization, but only when the transgene was paternally inherited. Since these two sequences were evaluated at the same genomic site by employing the transgene co-placement strategy, it is likely that the phenotype reflects the intrinsic activity of these fragments rather than position-effect variegation. CONCLUSIONS: Our results suggested that post-fertilization imprinted methylation is a versatile mechanism for protecting paternal imprinted methylation from reprogramming during the pre-implantation period.


Assuntos
Metilação de DNA , RNA Longo não Codificante , Animais , Feminino , Masculino , Camundongos , Gravidez , Ratos , Proteínas de Ligação ao Cálcio , Fertilização , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana , Camundongos Transgênicos , Placenta , RNA Longo não Codificante/genética , Sêmen
10.
Hum Mol Genet ; 19(7): 1190-8, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20047949

RESUMO

Imprinted expression of the mouse Igf2/H19 locus is controlled by parent-of-origin-specific methylation of the imprinting control region (ICR). We previously demonstrated that when placed in a heterologous genomic context, the H19 ICR fragment contains an intrinsic activity that allows it to acquire differential methylation in somatic cells but not in germ cells. In the present study, we investigated the requirements for the CTCF-binding sites of the ICR in the acquisition of post-fertilization methylation. To this end, two mutant ICR fragments were introduced into the human beta-globin locus in a yeast artificial chromosome transgenic mouse (TgM) model: 4xMut had mutations in all four ICR CTCF-binding sites that prevented CTCF binding but retained the methylation target CpG motifs, and -9CG harbored mutations in the CpG motifs within the CTCF-binding sites but each site retained constitutive CTCF-binding activity. In TgM germ cells and pre-implantation blastocysts, the absence of CTCF-binding sites (4xMut) did not lead to hypermethylation of the transgenic H19 ICR. However, after implantation, the mutations of CTCF sites (4xMut and -9CG) affected the maintenance of methylation. These results demonstrated that although the CTCF-binding sites are indispensable for maintenance of the unmethylated state of the maternal ICR in post-implantation embryos, they are not required to establish paternal-allele-specific methylation of the transgenic H19 ICR in pre-implantation embryos.


Assuntos
Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Região de Controle de Locus Gênico , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Blastocisto , Fator de Ligação a CCCTC , Ilhas de CpG , Embrião de Mamíferos , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Transgenes , Globinas beta/genética
11.
J Biol Chem ; 285(19): 14495-503, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20231293

RESUMO

Expression of the five beta-like globin genes (epsilon, Ggamma, Agamma, delta, beta) in the human beta-globin locus depends on enhancement by the locus control region, which consists of five DNase I hypersensitive sites (5'HS1 through 5'HS5). We report here a novel enhancer activity in 5'HS1 that appears to be potent in transfected K562 cells. Deletion analyses identified a core activating element that bound to GATA-1, and a two-nucleotide mutation that disrupted GATA-1 binding in vitro abrogated 5'HS1 enhancer activity in transfection experiments. To determine the in vivo role of this GATA site, we generated multiple lines of human beta-globin YAC transgenic mice bearing the same two-nucleotide mutation. In the mutant mice, epsilon-, but not gamma-globin, gene expression in primitive erythroid cells was severely attenuated, while adult beta-globin gene expression in definitive erythroid cells was unaffected. Interestingly, DNaseI hypersensitivity near the 5'HS1 mutant sequence was eliminated in definitive erythroid cells, whereas it was only mildly affected in primitive erythroid cells. We therefore conclude that, although the GATA site in 5'HS1 is critical for efficient epsilon-globin gene expression, hypersensitive site formation per se is independent of 5'HS1 function, if any, in definitive erythroid cells.


Assuntos
Cromossomos Artificiais de Levedura/genética , Desoxirribonuclease I/metabolismo , Região de Controle de Locus Gênico/genética , Globinas beta/genética , Globinas épsilon/genética , gama-Globinas/genética , Animais , Sequência de Bases , Western Blotting , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Globinas beta/metabolismo , Globinas épsilon/metabolismo , gama-Globinas/metabolismo
12.
Commun Biol ; 4(1): 1410, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921234

RESUMO

The mouse Igf2/H19 locus is regulated by genomic imprinting, in which the paternally methylated H19 imprinting control region (ICR) plays a critical role in mono-allelic expression of the genes in the locus. Although the maternal allele-specific insulator activity of the H19 ICR in regulating imprinted Igf2 expression has been well established, the detailed mechanism by which the H19 ICR controls mono-allelic H19 gene expression has not been fully elucidated. In this study, we evaluated the effect of H19 ICR orientation on imprinting regulation in mutant mice in which the H19 ICR sequence was inverted at the endogenous locus. When the inverted-ICR allele was paternally inherited, the methylation level of the H19 promoter was decreased and the H19 gene was derepressed, suggesting that methylation of the H19 promoter is essential for complete repression of H19 gene expression. Unexpectedly, when the inverted allele was maternally inherited, the expression level of the H19 gene was lower than that of the WT allele, even though the H19 promoter remained fully hypomethylated. These observations suggested that the polarity of the H19 ICR is involved in controlling imprinted H19 gene expression on each parental allele, dependent or independent on DNA methylation of the H19 promoter.


Assuntos
Expressão Gênica , Regiões Promotoras Genéticas , Animais , Metilação , Camundongos
13.
FASEB J ; 23(12): 4335-43, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19690216

RESUMO

In primitive erythroid cells of human beta-globin locus transgenic mice (TgM), the locus control region (LCR)-proximal epsilon- and gamma-globin genes are transcribed, whereas the distal delta- and beta-globin genes are silent. It is generally accepted that the beta-globin gene is competitively suppressed by gamma-globin gene expression at this developmental stage. Previously, however, we observed that epsilon-globin gene expression was severely attenuated when its distance from the LCR was extended, implying that beta-globin gene might also be silenced because of its great distance from the LCR. Here, to clarify the beta-globin gene silencing mechanism, we established TgM lines carrying either gamma- or epsilon- plus gamma-globin promoter deletions, without significantly altering the distance between the beta-globin gene and the LCR. Precocious expression of delta- and beta-globin genes was observed in primitive erythroid cells of mutant, but not wild-type TgM, which was most evident when both the epsilon and gamma promoters were deleted. Thus, we clearly demonstrated that the repression of the delta- and beta-globin genes in primitive erythroid cells is dominated by competitive silencing by the epsilon- and gamma-globin gene promoters, and that epsilon- and the other beta-like globin genes might be activated by two distinct mechanisms by the LCR.


Assuntos
Cromossomos Artificiais de Levedura/genética , Células Eritroides/metabolismo , Região de Controle de Locus Gênico/fisiologia , Globinas beta/genética , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Saccharomyces cerevisiae
14.
Mol Cell Biol ; 27(16): 5664-72, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17548470

RESUMO

Enhancer elements modulate promoter activity over vast chromosomal distances, and mechanisms that ensure restrictive interactions between promoters and enhancers are critical for proper control of gene expression. The human beta-globin locus control region (LCR) activates expression of five genes in erythroid cells, including the proximal embryonic epsilon- and the distal adult beta-globin genes. To test for possible distance sensitivity of the genes to the LCR, we extended the distance between the LCR and genes by 2.3 kbp within the context of a yeast artificial chromosome, followed by the generation of transgenic mice (TgM). In these TgM lines, epsilon-globin gene expression decreased by 90%, while the more distantly located gamma- or beta-globin genes were not affected. Remarkably, introduction of a consensus EKLF binding site into the epsilon-globin promoter rendered its expression distance insensitive; when tested in an EKLF-null genetic background, expression of the mutant epsilon-globin gene was severely compromised. Thus, the epsilon-globin gene differs in its distance sensitivity to the LCR from the other beta-like globin genes, which is, at least in part, determined by the transcription factor EKLF.


Assuntos
Globinas/genética , Região de Controle de Locus Gênico/genética , Transcrição Gênica/genética , Animais , Bacteriófago lambda/genética , Cromossomos Artificiais de Levedura/genética , Humanos , Células K562 , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Transfecção
15.
Epigenetics Chromatin ; 13(1): 2, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937365

RESUMO

BACKGROUND: Paternal allele-specific DNA methylation of the H19 imprinting control region (ICR) regulates imprinted expression of the Igf2/H19 genes. The molecular mechanism by which differential methylation of the H19 ICR is established during gametogenesis and maintained after fertilization, however, is not fully understood. We previously showed that a 2.9-kb H19 ICR fragment in transgenic mice was differentially methylated only after fertilization, demonstrating that two separable events, gametic and post-fertilization methylation, occur at the H19 ICR. We then determined that CTCF/Sox-Oct motifs and the 478-bp sequence of the H19 ICR are essential for maintaining its maternal hypomethylation status and for acquisition of paternal methylation, respectively, during the post-fertilization period. RESULTS: Using a series of 5'-truncated H19 ICR transgenes to dissect the 478-bp sequence, we identified a 118-bp region required for post-fertilization methylation activity. Deletion of the sequence from the paternal endogenous H19 ICR caused loss of methylation after fertilization, indicating that methylation activity of the sequence is required to protect endogenous H19 ICR from genome-wide reprogramming. We then reconstructed a synthetic DNA fragment in which the CTCF binding sites, Sox-Oct motifs, as well as the 118-bp sequence, were inserted into lambda DNA, and used it to replace the endogenous H19 ICR. The fragment was methylated during spermatogenesis; moreover, its allele-specific methylation status was faithfully maintained after fertilization, and imprinted expression of the both Igf2 and H19 genes was recapitulated. CONCLUSIONS: Our results identified a 118-bp region within the H19 ICR that is required for de novo DNA methylation of the paternally inherited H19 ICR during pre-implantation period. A lambda DNA-based artificial fragment that contains the 118-bp sequence, in addition to the previously identified cis elements, could fully replace the function of the H19 ICR in the mouse genome.


Assuntos
Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Espermatogônias/metabolismo , Animais , Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/genética , Feminino , Fertilização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/metabolismo
16.
PLoS One ; 14(2): e0203099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763343

RESUMO

Long-range associations between enhancers and their target gene promoters have been shown to play critical roles in executing genome function. Recent variations of chromosome capture technology have revealed a comprehensive view of intra- and interchromosomal contacts between specific genomic sites. The locus control region of the ß-globin genes (ß-LCR) is a super-enhancer that is capable of activating all of the ß-like globin genes within the locus in cis through physical interaction by forming DNA loops. CTCF helps to mediate loop formation between LCR-HS5 and 3'HS1 in the human ß-globin locus, in this way thought to contribute to the formation of a "chromatin hub". The ß-globin locus is also in close physical proximity to other erythrocyte-specific genes located long distances away on the same chromosome. In this case, erythrocyte-specific genes gather together at a shared "transcription factory" for co-transcription. Theoretically, enhancers could also activate target gene promoters at the identical loci, yet on different chromosomes in trans, a phenomenon originally described as transvection in Drosophilla. Although close physical proximity has been reported for the ß-LCR and the ß-like globin genes when integrated at the mouse homologous loci in trans, their structural and functional interactions were found to be rare, possibly because of a lack of suitable regulatory elements that might facilitate such trans interactions. Therefore, we re-evaluated presumptive transvection-like enhancer-promoter communication by introducing CTCF binding sites and erythrocyte-specific transcription units into both LCR-enhancer and ß-promoter alleles, each inserted into the mouse ROSA26 locus on separate chromosomes. Following cross-mating of mice to place the two mutant loci at the identical chromosomal position and into active chromation in trans, their transcriptional output was evaluated. The results demonstrate that there was no significant functional association between the LCR and the ß-globin gene in trans even in this idealized experimental context.


Assuntos
RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transcrição Gênica/genética , Animais , Sítios de Ligação/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Cromossomos/genética , Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Região de Controle de Locus Gênico/genética , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Globinas beta/genética
17.
Cell Signal ; 19(3): 519-27, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17113751

RESUMO

The members of the transcription factor Foxo family regulate the expression of genes concerned with the stress response, cell cycle and gluconeogenesis. Foxo1 (FKHR) contains 15 consensus phosphorylation sites for the mitogen-activated protein kinase (MAPK) family. Therefore, we hypothesized that MAPKs could directly regulate the transcriptional activity of Foxo1 via phosphorylation. In vitro kinase assay showed that Foxo1 was phosphorylated by extracellular signal-regulated kinase (Erk) and p38 MAPK (p38) but not by c-jun NH2-terminal kinase (JNK). In NIH3T3 cells, epidermal growth factor or anisomycin increased phosphorylation of exogenous Foxo1, which was significantly inhibited by pretreatment with an MEK 1 inhibitor, PD98059, or a p38 inhibitor, SB203580. Two-dimensional phosphopeptide mapping using mutation of phosphorylation sites for MAPK revealed that the nine serine residues in Foxo1 are specifically phosphorylated by Erk and that five of the nine residues are phosphorylated by p38 in vivo. Moreover, we also found that Foxo1 interacts with Ets-1 and functions as a coactivator for Ets-1 on the fetal liver kinase (Flk)-1 promoter in bovine carotid artery endothelial cells. Mutation of the nine phosphorylation sites for Erk in Foxo1 was shown to lead to less binding and synergistic activity for Ets-1 on the Flk-1 promoter when compared with wild-type Foxo1. These results suggest that Foxo1 is specifically phosphorylated by Erk and p38, and that this phosphorylation regulates the function of Foxo1 as a coactivator for Ets-1.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Anisomicina/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Flavonoides/farmacologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Genes Reporter , Humanos , Imidazóis/farmacologia , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Inibidores da Síntese de Proteínas/farmacologia , Piridinas/farmacologia
18.
Mol Cell Biol ; 38(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358217

RESUMO

The renin-angiotensin system plays an essential role in blood pressure homeostasis. Because renin activity is reflected as a blood pressure phenotype, its gene expression in the kidney is tightly regulated by a feedback mechanism; i.e., renin gene transcription is suppressed in a hypertensive state. To address the molecular mechanisms controlling hypertension-responsive mouse renin (mRen) gene regulation, we deleted either 5' (17-kb) or 3' (78-kb) regions of the endogenous mRen gene and placed the animals in a hypertensive environment. While the mRen gene bearing the 3' deletion was appropriately downregulated, the one bearing the 5' deletion lost this hypertension responsiveness. Because the 17-kb sequence exhibited enhancer activity in vivo and in vitro, we narrowed down the enhancer to a 2.3-kb core using luciferase assays in As4.1 cells. When this 2.3-kb sequence was removed from the endogenous mRen gene in the mouse, its basal expression was dramatically reduced, and the hypertension responsiveness was significantly attenuated. Furthermore, we demonstrated that the angiotensin II signal played an important role in mRen gene suppression. We propose that in a hypertensive environment, the activity of this novel enhancer is attenuated, and, as a consequence, mRen gene transcription is suppressed to maintain blood pressure.


Assuntos
Hipertensão/genética , Sistema Renina-Angiotensina/genética , Renina/genética , Alelos , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Animais Geneticamente Modificados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos Facilitadores Genéticos , Feminino , Homeostase , Hipertensão/metabolismo , Rim/metabolismo , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Renina/metabolismo , Transcrição Gênica
20.
Epigenetics Chromatin ; 11(1): 36, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29958543

RESUMO

BACKGROUND: Genomic imprinting is governed by allele-specific DNA methylation at imprinting control regions (ICRs), and the mechanism controlling its differential methylation establishment during gametogenesis has been a subject of intensive research interest. However, recent studies have reported that gamete methylation is not restricted at the ICRs, thus highlighting the significance of ICR methylation maintenance during the preimplantation period where genome-wide epigenetic reprogramming takes place. Using transgenic mice (TgM), we previously demonstrated that the H19 ICR possesses autonomous activity to acquire paternal-allele-specific DNA methylation after fertilization. Furthermore, this activity is indispensable for the maintenance of imprinted methylation at the endogenous H19 ICR during the preimplantation period. In addition, we showed that a specific 5' fragment of the H19 ICR is required for its paternal methylation after fertilization, while CTCF and Sox-Oct motifs are essential for its maternal protection from undesirable methylation after implantation. RESULTS: To ask whether specific cis elements are sufficient to reconstitute imprinted methylation status, we employed a TgM co-placement strategy for facilitating detection of postfertilization methylation activity and precise comparison of test sequences. Bacteriophage lambda DNA becomes highly methylated regardless of its parental origin and thus can be used as a neutral sequence bearing no inclination for differential DNA methylation. We previously showed that insertion of only CTCF and Sox-Oct binding motifs from the H19 ICR into a lambda DNA (LCb) decreased its methylation level after both paternal and maternal transmission. We therefore appended a 478-bp 5' sequence from the H19 ICR into the LCb fragment and found that it acquired paternal-allele-specific methylation, the dynamics of which was identical to that of the H19 ICR, in TgM. Crucially, transgene expression also became imprinted. Although there are potential binding sites for ZFP57 (a candidate protein thought to control the methylation imprint) in the larger H19 ICR, they are not found in the 478-bp fragment, rendering the role of ZFP57 in postfertilization H19 ICR methylation a still open question. CONCLUSIONS: Our results demonstrate that a differentially methylated region can be reconstituted by combining the activities of specific imprinting elements and that these elements together determine the activity of a genomically imprinted region in vivo.


Assuntos
Metilação de DNA , Impressão Genômica , Região de Controle de Locus Gênico , RNA Longo não Codificante/genética , Regiões 5' não Traduzidas , Animais , Fator de Ligação a CCCTC/metabolismo , Implantação do Embrião , Feminino , Fertilização , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa