Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hum Genet ; 64(4): 323-331, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30674982

RESUMO

Metachromatic leukodystrophy due to Arylsulfatase A enzyme deficiency is an autosomal recessive disorder caused by biallelic variations in ARSA gene. Till date 186 variations have been reported in ARSA gene worldwide, but the variation spectrum in India is not known. The aim of this study was to identify the variation profile in Indian patients presenting with features of Arylsulfatase A deficient metachromatic leukodystrophy. We sequenced the ARSA gene in 51 unrelated families and identified 36 variants out of which 16 were novel. The variations included 23 missense, 3 nonsense, and 6 frameshift variants (3 single-base deletions and 3 single-base duplications), 1 indel, one 3 bp deletion, and 2 splice site variations. The pathogenicity of the novel variations was inferred with the help of mutation prediction softwares like MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using in silico methods. The most common variation was c.931 C > T(p.Arg311*), found in 11.4% (14 out of 122 alleles) of the tested individuals. To the best of our knowledge, this study is the first of its kind in India with respect to the size of the cohort and the molecular diagnostic method used and one of the largest cohorts of metachromatic leukodystrophy studied till date.


Assuntos
Cerebrosídeo Sulfatase/genética , Leucodistrofia Metacromática/genética , Splicing de RNA/genética , Adolescente , Adulto , Alelos , Povo Asiático , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Índia/epidemiologia , Lactente , Leucodistrofia Metacromática/patologia , Masculino , Mutação , Adulto Jovem
2.
Am J Med Genet A ; 170(10): 2719-30, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27338287

RESUMO

Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc.


Assuntos
Mutação , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Adolescente , Alelos , Substituição de Aminoácidos , Biomarcadores , Criança , Pré-Escolar , Biologia Computacional/métodos , Consanguinidade , Análise Mutacional de DNA , Ativação Enzimática , Éxons , Fácies , Genótipo , Haplótipos , Humanos , Índia , Lactente , Recém-Nascido , Modelos Moleculares , Doenças de Niemann-Pick/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal , Conformação Proteica , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/metabolismo , Esplenomegalia
3.
Neuromuscul Disord ; 26(11): 809-814, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27521129

RESUMO

Schwartz-Jampel Syndrome type 1 is a rare autosomal recessive musculoskeletal disorder (OMIM #255800) caused by various mutations in the HSPG2 gene encoding protein perlecan, a ubiquitous heparan sulfate proteoglycan, which is an integral component of basement membranes and possesses angiogenic and growth-promoting attributes primarily by acting as a co-receptor for the basic fibroblast growth factors in human body. We report a novel homozygous intronic 5' splice site mutation in this gene (c.4740 + 5G>A) in a child with clinical features of Schwartz-Jampel syndrome type 1. The mutation was detected by exome sequencing and later confirmed by Sanger sequencing. The mother was found to be heterozygous for the mutation and an ongoing pregnancy found to be unaffected. cDNA analysis revealed skipping of exon 37 of HSPG2 gene in the patient due to the splicing error caused by this mutation. This is likely to result in loss of 38 amino acids from the domain III of the perlecan protein and presumably affects its structure and function as per protein modeling predictions. This report demonstrates the utility of exome sequencing as a routine molecular diagnostic approach of choice for this rare disorder.


Assuntos
Sequenciamento do Exoma , Proteoglicanas de Heparan Sulfato/genética , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Diagnóstico Pré-Natal , Éxons , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Lactente , Masculino , Osteocondrodisplasias/tratamento farmacológico , Osteocondrodisplasias/patologia , Sítios de Splice de RNA
4.
Gene ; 567(2): 173-81, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25936995

RESUMO

GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in the GLB1 gene, leading to the deficiency of the enzyme ß-d-galactosidase. In this study, we report molecular findings in 50 Asian Indian families with GM1 gangliosidosis. We sequenced all the exons and flanking intronic sequences of GLB1 gene. We identified 33 different mutations (20 novel and 13 previously reported). The novel mutations include 12 missense (p.M1?, p.E129Q, p.G134R, p.L236P, p.G262E, p.L297F, p.Y331C, p.G414V, p.K493N, p.L514P, p.P597L, p.T600I), four splicing (c.246-2A>G, c.397-2A>G, c.552+1G>T, c.956-2A>G), three indels (p.R22Qfs*8, p.L24Cfs*47, p.I489Qfs*4) and one nonsense mutation (p.Q452*). Most common mutations identified in this study were c.75+2InsT (14%) and p.L337P (10%). Known mutations accounted for 67% of allele frequency in our cohort of patients, suggesting that these mutations in GLB1 are recurrent across different populations. Twenty three mutations were localized in the TIM barrel domain, ß-domain 1 and ß-domain 2. In silico sequence and structure analysis of GLB1 reveal that all the novel mutations affect the function and structure of the protein. We hereby report on the largest series of patients with GM1 gangliosidosis and the first from India.


Assuntos
Gangliosidose GM1/genética , beta-Galactosidase/genética , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Índia , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa