Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 109(11): 1941-1948, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31215839

RESUMO

Meloidogyne graminicola causes significant damage to rice fields worldwide. Sources of resistance to M. graminicola reported in Oryza sativa are limited. Resistance to this species has been found in other Oryza species such as O. glaberrima and O. longistaminata. This study aimed to evaluate the reaction of four wild species of Oryza from the Embrapa Rice and Bean Germplasm Bank (Goiás, Brazil) to a pool of M. graminicola populations and determine the resistance mechanism in O. glumaepatula. Two genotypes of O. glaberrima, one of O. alta, three of O. glumaepatula, one of O. grandiglumis, one of O. longistaminata, and one of O. sativa (control) were included in the study. The results showed that O. glumaepatula was highly resistant (reproduction factor [RF] < 1). O. glaberrima, O. alta, and O. grandiglumis were considered moderately resistant. O. longistaminata was susceptible, although values of RF remained lower than the control O. sativa 'BR-IRGA 410', considered highly susceptible. Histological observations on the interaction of O. glumaepatula and M. graminicola showed reduced penetration of second-stage juveniles (J2s) when this resistant wild accession was compared with O. sativa. An intense hypersensitivity response-like reaction occurred at 2 days after inoculation in the root cortex of the resistant accession. Few J2s established in the central cylinder, and rare collapsed giant cells were observed surrounded by degenerate females. Fluorescence microscopy in O. glumaepatula revealed giant cells and the female body presumably exhibiting accumulation of phenolic compounds. Our study suggests that wild rice accessions, especially from the AA genotype (e.g., O. glumaepatula), are of great interest for use in future breeding programs with Oryza spp.


Assuntos
Resistência à Doença , Oryza , Tylenchoidea , Animais , Brasil , Resistência à Doença/genética , Genótipo , Oryza/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia
2.
Methods Mol Biol ; 2756: 227-245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427296

RESUMO

Among plant-parasitic nematodes, root-knot nematodes (RKN), Meloidogyne spp., are the most important parasite infecting economically important crops globally and causing severe losses in crop production. The use of efficient nematode control methods against these parasites depends upon their correct detection in roots and soil samples. Currently, the use of integrated identification methods, including biochemical, molecular, and morphological-based characters, is preferred. But the techniques using morphology and phylogenetic analysis are time-consuming and not suitable for routine analysis. They have only been used for studies of cryptic species, which were identified using integrative taxonomy. Here we describe the enzymatic and molecular-based methods that have successfully been used in Brazil for more than 25 years in the Nematology Lab at Embrapa Genetic Resources and Biotechnology for routine analysis. This technique is a combination of isozyme esterase profiling and molecular markers, with the aim of having a rapid and correct diagnosis of Meloidogyne spp. populations from field and greenhouse.


Assuntos
Raízes de Plantas , Tylenchoidea , Animais , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Tylenchoidea/genética , Brasil
3.
Front Plant Sci ; 15: 1425336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246818

RESUMO

The Mi-1.2 gene confers resistance to a wide range of Meloidogyne species, being the most important resistance factor employed in tomato breeding so far. However, many aspects related to the interaction of Mi-1.2-carrying tomato cultivars and virulent/avirulent Meloidogyne populations have not yet been clarified. Herein, comparative histopathological analyses were carried after inoculation of the homozygous (Mi-1.2/Mi-1.2) tomato rootstock 'Guardião' and the susceptible cultivar 'Santa Clara' (mi-1.2/mi-1.2) with virulent and avirulent populations of M. javanica. In the susceptible control, it was possible to visualize second stage juveniles (J2) of avirulent population and feeding sites from 2 to 30 days after infection (DAI) with females reaching maturity at 24-34 DAI. In the resistant rootstock, the Mi-1.2 gene-mediated resistance was related mainly to early defense responses (pre-infection and hypersensitive reaction), which led to an immunity-like phenotype that completely prevented the reproduction of the avirulent Meloidogyne population. On the other hand, J2s of the virulent M. javanica population were able to penetrate roots much more than the avirulent population, migrated and developed normally, showing intense and similar pattern of penetration from 4 to 34 DAI in the root tissues of both resistant and susceptible tomato genotypes. The total numbers of J2, J3, J4, and females counted in 'Santa Clara' for the virulent population of M. javanica were higher than in 'Guardião'.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa