Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Phys Chem Chem Phys ; 25(11): 7589-7610, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876860

RESUMO

The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses mechanisms by which small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a universal phenomenology of separation between the Stokes shift and variance reorganization energies of electron transfer.

2.
Phys Chem Chem Phys ; 25(39): 26923-26928, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782532

RESUMO

Polarizability is a fundamental property of all molecular systems describing the deformation of the molecular electronic density in response to an applied electric field. The question of whether polarizability of the active site needs to be included in theories of enzymatic activity remains open. Hybrid quantum mechanical/molecular mechanical calculations are hampered by difficulties faced by many quantum-chemistry algorithms to provide sufficiently accurate estimates of the anisotropic second-rank tensor of molecular polarizability. In this Comment, we provide general theoretical arguments for the values of polarizability of the quantum region or a molecule which have to be reproduced by electronic structure calculations.

3.
J Chem Phys ; 157(16): 164501, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319416

RESUMO

The nonlinear dielectric effect (NDE) is traditionally viewed as originating from saturation of the response of individual dipoles in a strong electric field. This mean-field view, mathematically described by the Langevin saturation function, predicts enhanced dielectric saturation at lower temperatures. In contrast, recent experiments for glycerol have shown a sharp increase of the NDE with increasing temperature. The formalism presented here splits the NDE into a sum of a term representing binary correlations of dipolar orientations and terms referring to three- and four-particle orientational correlations. Analysis of experimental data shows that the contribution of three- and four-particle correlations strongly increases at elevated temperatures. The mean-field picture of dielectric saturation as the origin of the NDE is inconsistent with observations. A positive NDE (increment of the field-dependent dielectric constant) is predicted for low-concentration solutions of polar molecules in nonpolar solvents. The dependence of the NDE on the concentration of the polar component is polynomial.


Assuntos
Algoritmos , Glicerol , Temperatura , Solventes
4.
J Chem Phys ; 157(8): 080901, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050013

RESUMO

In the Stokes-Einstein picture, diffusion of a Brownian particle or a molecule in a liquid solvent is caused by unbalanced fluctuations of osmotic forces on different sides of the particle. When the particle carries a charge or a higher multipolar moment, this picture is amended by fluctuations of electrostatic forces producing dielectric friction. Dielectric friction slows down both the translational and rotational diffusion. While this picture is well established and is physically sound, standard theories grossly overestimate the magnitude of dielectric friction for small dipolar solutes and larger colloidal particles, such as proteins. Motivated by recent simulation studies, this Perspective discusses the interplay between osmotic (van der Waals) and electrostatic forces in promoting molecular and colloidal diffusion. Much can be learned about microscopic friction mechanisms from statistical and dynamical correlations between osmotic and electrostatic forces.


Assuntos
Eletricidade Estática , Simulação por Computador , Difusão , Soluções , Solventes
5.
J Chem Phys ; 157(9): 095102, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075735

RESUMO

Diffusional dynamics of the donor-acceptor distance are responsible for the appearance of a new time scale of diffusion over the distance of electronic tunneling in electron-transfer reactions. The distance dynamics compete with the medium polarization dynamics in the dynamics-controlled electron-transfer kinetics. The pre-exponential factor of the electron-transfer rate constant switches, at the crossover distance, between a distance-independent, dynamics-controlled plateau and exponential distance decay. The crossover between two regimes is controlled by an effective relaxation time slowed down by a factor exponentially depending on the variance of the donor-acceptor displacement. Flexible donor-acceptor complexes must show a greater tendency for dynamics-controlled electron transfer. Energy chains based on electron transport are best designed by placing the redox cofactors near the crossover distance.


Assuntos
Elétrons , Transporte de Elétrons , Cinética , Conformação Molecular , Oxirredução
6.
J Chem Phys ; 156(20): 204501, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649851

RESUMO

Classical theories of dielectric friction make two critical assumptions: (i) friction due to van der Waals (vdW) forces is described by hydrodynamic drag and is independent of the ionic charge and (ii) vdW and electrostatic forces are statistically independent. Both assumptions turn out to be incorrect when tested against simulations of anions and cations with varying charge magnitude dissolved in water. Both the vdW and electrostatic components of the force variance scale linearly with the ionic charge squared. The two components are strongly anticorrelated producing simple relations for the total force variance in terms of self-variances. The inverse diffusion constant scales linearly with the charge squared. Solvation asymmetry between cations and anions extends to linear transport coefficients.

7.
J Chem Phys ; 156(17): 171102, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525648

RESUMO

Nonlinear dielectric measurements are an important tool to access material properties and dynamics concealed in their linear counterparts, but the available data are often intermittent and, on occasion, even contradictory. Employing and refining a recently developed technique for high ac field dielectric measurements in the static limit, we ascertain nonlinear effects in glycerol over a wide temperature range from 230 to 320 K. We find that the temperature dependence of the Piekara factor a, which quantifies the saturation effect, changes drastically around 290 K, from ∂a/∂T = +1.4 to -130 in units of 10-18 V2 m-2 K-1. These high values of |a| quantify not only elevated dielectric saturation effects but also indicate a temperature driven increase in higher-order orientational correlations and considerable correction terms with respect to the central limit theorem. No signature of this feature can be found in the corresponding low field data.

8.
J Chem Phys ; 155(11): 114110, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551535

RESUMO

Periodic boundary conditions and Ewald sums used in standard simulation protocols require finite-size corrections when the total charge of the simulated system is nonzero. Corrections for ion solvation were introduced by Hummer, Pratt, and García, [J. Chem. Phys. 107, 9275 (1997)]. The latter approach is extended here to derive finite-size correction for the Stokes-shift and reorganization energy applied to electron-transfer reactions. The same correction term, scaling inversely with the box size, adds to the reorganization energy from the energy-gap variance but is subtracted from the reorganization energy calculated from the Stokes shift. Finite-size corrections thus widen the gap between these two quantities, which were recently found to diverge for protein electron transfer. Corrections to the free energy of dipole solvation and the variance of the electric field scale as m2/L3 with the solute dipole m and the box size L.

9.
Phys Chem Chem Phys ; 22(19): 10653-10665, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31934688

RESUMO

The Marcus theory of electron transfer views fluctuating orientations of permanent dipoles as the nuclear mode bringing the donor and acceptor into the tunneling resonance. Electronic polarization of the solvent is excluded as the fast mode adiabatically following the electronic density. This view, valid for solids, does not apply to molecular liquids where molecular translations (density fluctuations) modulate the induction interaction of the donor-acceptor complex with the solvent. This mechanism of promoting radiationless electronic transitions is considered here in the framework of the perturbation liquid-state theory. The reorganization energy of electron transfer in nonpolar solvents is nonzero and reaches the values of 0.1-0.3 eV for typical molecular sizes and solvents used in applications. The reorganization energy scales quadratically with the molecular polarizability of the solvent and decays as the inverse fifth power with the size of the donor and acceptor. The combination of the entropic character of the density fluctuations, driven by re-packing of molecular cores, with the short range of induction solute-solvent interactions leads to the violation of the fluctuation-dissipation theorem for the variance of the donor-acceptor energy gap. An explicit, approximately hyperbolic, dependence of the reorganization energy on temperature is predicted. It leads to a non-Arrhenius kinetic law for the rate constant of electron transfer in nonpolar liquid solvents.

10.
J Chem Phys ; 153(4): 044503, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752691

RESUMO

Mobility of ions in polar liquids is diminished when the ionic charge is increased. This phenomenon, known as dielectric friction, is caused by the retarded response of the liquid's dipoles to the charge movement. Linear response theories predict linear scaling of the inverse diffusion coefficient with the squared ionic charge. This prediction is analyzed here by molecular dynamics simulations of model ions with fractional charge q in the simple point charge water and by microscopic theory formulated in terms of the dynamic electric-field susceptibility of the solvent. The results of the analytical theory, and of its dielectric continuum limit, are in excellent agreement with simulations at sufficiently small charges q < 0.5 when linear response holds. At higher ionic charges, the hydration shell contracts, resulting in deviations from linear response in both static and dynamic properties of the electric field produced by water at the ion. Nevertheless, dielectric friction continues to rise in the nonlinear regime, resulting in an overall factor of 3.7 slower diffusion upon placing a single charge q = 1 on the solute. An approximately linear scaling of the inverse diffusion coefficient with the squared ionic charge comes from a mutual compensation between nonlinear solvation and correlations between non-electrostatic and electrostatic forces. Mobility of common electrolyte ions in water is predicted to occur in the regime of nonlinear dielectric friction.

11.
J Chem Phys ; 150(7): 074504, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795684

RESUMO

An analytical theory is developed for radiationless transitions in molecules characterized by nonequilibrium populations of their vibrational modes. Several changes to the standard transition-state framework follow from nonequilibrium conditions: (i) non-Arrhenius kinetics, (ii) the violation of the fluctuation-dissipation theorem (FDT), and (iii) the breakdown of the detailed balance. The violation of the FDT is reflected in the breakdown of relations between the first (Stokes shift) and second (inhomogeneous band-width) spectral moments and of similar relations between reorganization parameters for radiationless transitions. The detailed balance between the forward and backward rates is not maintained, requiring a lower effective free energy of the reaction relative to the thermodynamic limit. The model suggests that strong control of radiationless transitions can be achieved if a nonequilibrium population of vibrations modulating the donor-acceptor distance is produced.

12.
Phys Chem Chem Phys ; 20(37): 24176-24185, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30209500

RESUMO

A theory of redox reactions involving electron transfer between a metal electrode and a molecule in solution is formulated in terms of two types of nuclear coordinates of the thermal bath: electrostatic polarization of the medium and local low-frequency vibrations. The polarization fluctuations follow Gaussian statistics. In contrast, the vibrational coordinate is allowed to change its force constant between two oxidation states of the reactant, which is projected onto non-Gaussian fluctuations of the reactant's electronic states. A closed-form analytical theory for the electrode redox reactions is formulated in terms of three reorganization energies: the reorganization energy for the electrostatic polarization of the medium and two internal (vibrational) reorganization energies for the reduced and oxidized states of the reactant. The theory predicts asymmetry between the cathodic and anodic branches of the electrode current driven by the corresponding difference in the vibrational force constants.

13.
Phys Chem Chem Phys ; 20(42): 27069-27081, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30328845

RESUMO

Classical molecular dynamics simulations of the hydration thermodynamics, structure, and dynamics of water in hydration shells of charged buckminsterfullerenes are presented in this study. Charging of fullerenes leads to a structural transition in the hydration shell, accompanied by creation of a significant population of dangling O-H bonds pointing toward the solute. In contrast to the well accepted structure-function paradigm, this interfacial structural transition causes nearly no effect on either the dynamics of hydration water or on the solvation thermodynamics. Linear response to the solute charge is maintained despite significant structural changes in the hydration shell, and solvation thermodynamic potentials are nearly insensitive to the altering structure. Only solvation heat capacities, which are higher thermodynamic derivatives of the solvation free energy, indicate some sensitivity to the local hydration structure. We have separated the solvation thermodynamic potentials into direct solute-solvent interactions and restructuring of the hydration shell and analyzed the relative contributions of electrostatic and nonpolar interactions to the solvation thermodynamics.

14.
J Chem Phys ; 148(15): 154501, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29679972

RESUMO

A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.

15.
Soft Matter ; 13(44): 8188-8201, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29082406

RESUMO

We present a model of the dynamical transition of atomic displacements in proteins. Increased mean-square displacement at higher temperatures is caused by the softening of the force constant for atomic/molecular displacements by electrostatic and van der Waals forces from the protein-water thermal bath. Displacement softening passes through a nonergodic dynamical transition when the relaxation time of the force-force correlation function enters, with increasing temperature, the instrumental observation window. Two crossover temperatures are identified. The lower crossover, presently connected to the glass transition, is related to the dynamical unfreezing of rotations of water molecules within nanodomains polarized by charged surface residues of the protein. The higher crossover temperature, usually assigned to the dynamical transition, marks the onset of water translations. All crossovers are ergodicity breaking transitions depending on the corresponding observation windows. Allowing stretched exponential relaxation of the protein-water thermal bath significantly improves the theory-experiment agreement when applied to solid protein samples studied by Mössbauer spectroscopy.


Assuntos
Hemeproteínas/química , Hemeproteínas/metabolismo , Ferro/metabolismo , Cinética , Transição de Fase
16.
J Phys Chem A ; 121(11): 2232-2240, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28245115

RESUMO

Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.

18.
J Chem Phys ; 147(8): 084502, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863546

RESUMO

Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.


Assuntos
Muramidase/química , Água/química , Absorção de Radiação , Algoritmos , Simulação de Dinâmica Molecular , Conformação Proteica , Eletricidade Estática
19.
J Chem Phys ; 147(19): 194506, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166105

RESUMO

Standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate pre-exponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamically freeze on the reaction time scale and do not contribute to the activation barrier. Here we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing the electrode overpotential speeds the electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends on the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes the electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. This result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.

20.
J Chem Phys ; 146(6): 064504, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28201912

RESUMO

The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa