Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Sci Food Agric ; 104(10): 5964-5972, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437521

RESUMO

BACKGROUND: Seafood consumers are widely exposed to diclofenac due to the high contamination levels often present in aquatic organisms. It is a potential risk to public health due its endocrine disruptor properties. Limited information is available about diclofenac behavior after food digestion to enable a more realistic scenario of consumer exposure. This study aimed to evaluate cooking effects on diclofenac levels, and determine diclofenac bioaccessibility by an in vitro digestion assay, using commercial fish species (seabass and white mullet) as models. The production of the main metabolite 4'-hydroxydiclofenac was also investigated. Fish hamburgers were spiked at two levels (150 and 1000 ng g-1) and submitted to three culinary treatments (roasting, steaming and grilling). RESULTS: The loss of water seems to increase the diclofenac levels after cooking, except in seabass with higher levels. The high bioaccessibility of diclofenac (59.1-98.3%) observed in both fish species indicates that consumers' intestines are more susceptible to absorption, which can be worrisome depending on the level of contamination. Contamination levels did not affect the diclofenac bioaccessibility in both species. Seabass, the fattest species, exhibited a higher bioaccessibility of diclofenac compared to white mullet. Overall, cooking decreased diclofenac bioaccessibility by up to 40% in seabass and 25% in white mullet. The main metabolite 4'-hydroxydiclofenac was not detected after cooking or digestion. CONCLUSION: Thus, consumption of cooked fish, preferentially grilled seabass and steamed or baked white mullet are more advisable. This study highlights the importance to consider bioaccessibility and cooking in hazard characterization studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Culinária , Diclofenaco , Digestão , Contaminação de Alimentos , Alimentos Marinhos , Diclofenaco/metabolismo , Diclofenaco/química , Animais , Contaminação de Alimentos/análise , Alimentos Marinhos/análise , Peixes/metabolismo , Bass/metabolismo , Humanos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Smegmamorpha/metabolismo , Modelos Biológicos
2.
Environ Res ; 169: 7-25, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30399468

RESUMO

Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.


Assuntos
Perciformes , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , Mudança Climática , Ecotoxicologia , Concentração de Íons de Hidrogênio
3.
Environ Res ; 164: 186-196, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29501006

RESUMO

Climate change and chemical contamination are global environmental threats of growing concern for the scientific community and regulatory authorities. Yet, the impacts and interactions of both stressors (particularly ocean warming and emerging chemical contaminants) on physiological responses of marine organisms remain unclear and still require further understanding. Within this context, the main goal of this study was to assess, for the first time, the effects of warming (+ 5 °C) and accumulation of a polybrominated diphenyl ether congener (BDE-209, brominated flame retardant) through dietary exposure on energy budget of the juvenile white seabream (Diplodus sargus). Specifically, growth (G), routine metabolism (R), excretion (faecal, F and nitrogenous losses, U) and food consumption (C) were calculated to obtain the energy budget. The results demonstrated that the energy proportion spent for G dominated the mode of the energy allocation of juvenile white seabream (56.0-67.8%), especially under the combined effect of warming plus BDE-209 exposure. Under all treatments, the energy channelled for R varied around 26% and a much smaller percentage was channelled for excretion (F: 4.3-16.0% and U: 2.3-3.3%). An opposite trend to G was observed to F, where the highest percentage (16.0 ±â€¯0.9%) was found under control temperature and BDE-209 exposure via diet. In general, the parameters were significantly affected by increased temperature and flame retardant exposure, where higher levels occurred for: i) wet weight, relative growth rate, protein and ash contents under warming conditions, ii) only for O:N ratio under BDE-209 exposure via diet, and iii) for feed efficiency, ammonia excretion rate, routine metabolic rate and assimilation efficiency under the combination of both stressors. On the other hand, decreased viscerosomatic index was observed under warming and lower fat content was observed under the combined effect of both stressors. Overall, under future warming and chemical contamination conditions, fish energy budget was greatly affected, which may dictate negative cascading impacts at population and community levels. Further research combining other climate change stressors (e.g. acidification and hypoxia) and emerging chemical contaminants are needed to better understand and forecast such biological effects in a changing ocean.


Assuntos
Mudança Climática , Peixes , Retardadores de Chama , Animais , Organismos Aquáticos , Peixes/fisiologia , Aquecimento Global , Dinâmica Populacional , Temperatura
4.
Environ Res ; 161: 236-247, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29169098

RESUMO

Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater temperatures (Δ = + 4°C) and lower pH levels (Δ = - 0.4 pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs (dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when both abiotic stressors are combined, bivalves' capacity to accumulate contaminants may be time-dependent, considering significantly drastic increase observed with Dec 602 and TBBPA, during the last 10 days of exposure, when compared to reference conditions. Such changes in contaminants' bioaccumulation/elimination patterns also suggest a potential increase of human health risks of some compounds, if the climate continues changing as forecasted. Therefore, this first study pointed out the urgent need for further research on the effects of abiotic conditions on emerging contaminants kinetics, to adequately estimate the potential toxicological hazards associated to these compounds and develop recommendations/regulations for their presence in seafood, considering the prevailing environmental conditions expected in tomorrow's ocean.


Assuntos
Mytilus , Temperatura , Poluentes Químicos da Água , Animais , Humanos , Concentração de Íons de Hidrogênio , Medição de Risco , Água do Mar , Poluentes Químicos da Água/farmacocinética
5.
Environ Res ; 149: 77-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179934

RESUMO

Warming is an expected impact of climate change that will affect coastal areas in the future. These areas are also subjected to strong anthropogenic pressures leading to chemical contamination. Yet, the consequences of both factors for marine ecosystems, biota and consumers are still unknown. The present work aims to investigate, for the first time, the effect of temperature increase on bioaccumulation and elimination of mercury [(total mercury (THg) and methylmercury (MeHg)] in three tissues (muscle, liver, and brain) of a commercially important seafood species - European seabass (Dicentrarchus labrax). Fish were exposed to the ambient temperature currently used in seabass rearing (18°C) and to the expected ocean warming (+4°C, i.e. 22°C), as well as dietary MeHg during 28 days, followed by a depuration period of 28 days fed with a control diet. In both temperature exposures, higher MeHg contents were observed in the brain, followed by the muscle and liver. Liver registered the highest elimination percentages (EF; up to 64% in the liver, 20% in the brain, and 3% in the muscle). Overall, the results clearly indicate that a warming environment promotes MeHg bioaccumulation in all tissues (e.g. highest levels in brain: 8.1mgkg(-1) ww at 22°C against 6.2mgkg(-1) ww at 18°C after 28 days of MeHg exposure) and hampers MeHg elimination (e.g. liver EF decreases after 28 days of depuration: from 64.2% at 18°C to 50.3% at 22°C). These findings suggest that seafood safety may be compromised in a warming context, particularly for seafood species with contaminant concentrations close to the current regulatory levels. Hence, results point out the need to strengthen research in this area and to revise and/or adapt the current recommendations regarding human exposure to chemical contaminants through seafood consumption, in order to integrate the expected effects of climate change.


Assuntos
Bass/metabolismo , Exposição Ambiental , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Alimentos Marinhos/análise , Poluentes Químicos da Água/metabolismo , Animais , Encéfalo/metabolismo , Mudança Climática , Monitoramento Ambiental , Temperatura Alta , Fígado/metabolismo , Mercúrio/química , Compostos de Metilmercúrio/química , Músculos/metabolismo , Portugal , Poluentes Químicos da Água/química
6.
Environ Res ; 143(Pt B): 11-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25864933

RESUMO

This research classifies European consumers into segments based on their health risk-benefit perception related to seafood consumption. The profiling variables of these segments are seafood consumption frequency, general attitude toward consuming fish, confidence in control organizations, attitude toward the marine environment, environmental concern and socio-demographics. A web-based survey was performed in one western European country (Belgium), one northern European country (Ireland) and three southern European countries (Italy, Portugal and Spain), resulting in a total sample of 2824 participants. A cluster analysis was performed based on risk-benefit perception related to seafood and the profiles of the segments were determined by a robust 2-way ANOVA analysis accounting for country effects. Although this study confirms consumers' positive image of consuming seafood, gradients are found in health risk-benefit perception related to seafood consumption. Seafood consumption frequency is mainly determined by country-related traditions and habits related to seafood rather than by risk-benefit perceptions. Segments with a higher benefit perception, irrespective of their level of risk perception, show a more positive attitude toward consuming seafood and toward the marine environment; moreover, they report a higher concern about the marine environment and have a higher involvement with seafood and with the marine environment. Consequently, information campaigns concentrating on pro-environmental behavior are recommended to raise the involvement with seafood and the marine environment as this is associated with a higher environmental concern. This research underpins that in such information campaigns a nationally differentiated rather than a pan-European or international information strategy should be aimed for because of significant cultural differences between the identified segments.


Assuntos
Participação da Comunidade , Monitoramento Ambiental/métodos , Preferências Alimentares , Conhecimentos, Atitudes e Prática em Saúde , Alimentos Marinhos/normas , Poluição da Água/análise , Análise por Conglomerados , Europa (Continente) , Feminino , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Humanos , Masculino , Modelos Teóricos , Medição de Risco , Fatores Socioeconômicos , Inquéritos e Questionários
7.
Environ Res ; 143(Pt B): 72-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26411778

RESUMO

The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potential risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15-0.94 mg kg(-1)), Pb (0.37-0.89 mg kg(-1)), Co (0.48-1.1 mg kg(-1)), Cu (4.8-8.4 mg kg(-1)), Zn (75-153 mg kg(-1)), Cr (1.0-4.5 mg kg(-1)) and Fe (283-930 mg kg(-1)) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg(-1)). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg(-1) and 43 mg kg(-1), respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species is a fundamental step in environmental monitoring of each contaminant, especially in coastal areas. Furthermore, data clearly shows that the current risk assessment and legislation solely based on total As or Hg data is limiting, as elemental speciation greatly varies according to seafood species, thus playing a key role in human exposure assessment via food.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Animais , Arsenicais/análise , Bivalves/química , Europa (Continente) , Peixes/metabolismo , Cadeia Alimentar , Limite de Detecção , Metais Pesados/toxicidade , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/toxicidade , Alimentos Marinhos/normas , Alga Marinha/química , Poluentes Químicos da Água/toxicidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-24835486

RESUMO

Both climate change and biological invasions are among the most serious global environmental threats. Yet mechanisms underlying these eventual interactions remain unclear. The aim of this study was to undertake a comprehensive examination of the physiological and biochemical responses of native (Ruditapes decussatus) and alien-invasive (Ruditapes philippinarum) clams to environmental warming. We evaluated thermal tolerance limits (CTMax), routine metabolic rates (RMRs) and respective thermal sensitivity (Q10 values), critical oxygen partial pressure (Pcrit), heat shock response (HSP70/HSC70 levels), lipid peroxidation (MDA build-up) and antioxidant enzyme [glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD)] activities. Contrary to most studies that show that invasive species have a higher thermal tolerance than native congeners, here we revealed that the alien-invasive and native species had similar CTMax values. However, warming had a stronger effect on metabolism and oxidative status of the native R. decussatus, as indicated by the higher RMRs and HSP70/HSC70 and MDA levels, as well as GST, CAT and SOD activities. Moreover, we argue that the alien-invasive clams, instead of up-regulating energetically expensive cellular responses, have evolved a less demanding strategy to cope with short-term environmental (oxidative) stress-pervasive valve closure. Although efficient during stressful short-term periods to ensure isolation and guarantee longer survival, such adaptive behavioural strategy entails metabolic arrest (and the enhancement of anaerobic pathways), which to some extent will not be advantageous under the chronically warming conditions predicted in the future.


Assuntos
Bivalves/metabolismo , Mudança Climática , Oceanos e Mares , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Bivalves/genética , Bivalves/fisiologia , Catalase/metabolismo , Monitoramento Ambiental , Proteínas de Choque Térmico HSP70/biossíntese , Resposta ao Choque Térmico , Peroxidação de Lipídeos/genética , Superóxido Dismutase/metabolismo
9.
Heliyon ; 10(15): e35135, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157319

RESUMO

Extreme weather events, like marine heatwaves (MHWs), are becoming more frequent and severe due to climate change, posing several challenges to marine ecosystems and their services. As disease outbreaks are often prompted by these acute phenomena, it is essential to develop eco-innovative strategies that can efficiently improve farmed fish resilience, especially under sub-optimal rearing conditions, thereby ensuring a sustainable aquaculture production. This study aimed to unveil farmed juvenile white seabream (Diplodus sargus, 28.50 ± 1.10 g weight, n = 150) immune and antioxidant responses under a category II MHW in the Mediterranean Sea (+4 °C, 8 days of temperature increase plus 15 days of plateau at the peak temperature) and to investigate whether a 30 days period of prophylactic biofortification with Asparagopsis taxiformis (1.5 %, 3 % and 6 %) enhanced fish resilience to these extreme events. Several biomarkers from different organization levels (individual, cellular, biochemical and molecular) were assessed upon 30 days of biofortification (T30), exposure (after 8 days of temperature increase + 15 days at peak temperature, T53) and recovery (8 days of temperature decrease, T61) from the MHW. Results showed that MHW negatively affected the fish physiological status and overall well-being, decreasing specific growth rate (SGR) and haematocrit (Ht) and increasing erythrocyte nuclear abnormalities (ENAs) and lipid peroxidation (LPO). These adverse effects were alleviated through biofortification with A. taxiformis. Seaweed inclusion at 1.5 % was the most effective dose to minimize the severity of MHW effects, significantly improving immune responses of D. sargus (i.e. increased levels of immunoglobulin M, peroxidase activity and lysozyme expression) and modulating antioxidant responses (i.e. decreased LPO, catalase and glutathione S-transferase activity). These findings confirm that A. taxiformis is a functional ingredient of added value to the aquaculture industry, as its inclusion in marine fish diets can beneficially modulate fish immunity and resilience under optimal and adverse rearing conditions.

10.
Sci Total Environ ; 920: 170989, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38365038

RESUMO

Pentabromodiphenyl ether (BDE-99) and bisphenol A (BPA) are synthetic organic compounds present in several daily use products. Due to their physicochemical properties, they are ubiquitously present in aquatic ecosystems and considered highly persistent. Recent evidence has confirmed that both emerging compounds are toxic to humans and terrestrial mammals eliciting a wide range of detrimental effects at endocrine and immune levels. However, the ecotoxicological responses that they can trigger in vertebrate marine species have not yet been established. Hence, this study aimed to investigate the ecotoxicological responses of juvenile Sparus aurata upon chronic (28 days) dietary exposure to BDE-99 and BPA (alone and combined) following an integrated multi-biomarker approach that combined fitness indicators (Fulton's K and splenosomatic indexes) with endocrine [cortisol, 17ß-estradiol (E2), 11-ketotestosterone (11-KT) concentrations] and immune (peroxidase and antiprotease activities) endpoints in fish plasma, and oxidative stress [superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities, and lipid peroxidation (LPO)] endpoints in the fish spleen. The mixture of BDE-99 and BPA yielded the highest IBR index value in both plasma and spleen biomarkers, therefore, suggesting that the effects of these compounds are more severe when they act together. Endocrine biomarkers were the most responsive in the three contaminated treatments. Fitness indicators were not affected by the individual nor the interactive effects of BDE-99 and BPA. These findings highlight the relevance of accounting for the interactive effects of emerging chemical contaminants and integrating responses associated with distinct biological pathways when investigating their impacts on marine life, as such a multi-biomarker approach provides a broader, more realistic and adequate perspective of challenges faced by fish in a contaminated environment.


Assuntos
Compostos Benzidrílicos , Éteres Difenil Halogenados , Fenóis , Dourada , Animais , Humanos , Dourada/metabolismo , Ecossistema , Estresse Oxidativo , Biomarcadores/metabolismo , Mamíferos/metabolismo
11.
Antioxidants (Basel) ; 13(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39199195

RESUMO

The increasing frequency and duration of marine heatwaves (MHWs) due to climate change pose severe threats to aquaculture, causing drastic physiological and growth impairments in farmed fish, undermining their resilience against additional environmental pressures. To ensure sustainable production that meets the global seafood demand and animal welfare standards, cost-effective and eco-friendly strategies are urgently needed. This study explored the efficacy of the red macroalga Asparagopsis taxiformis on juvenile white seabream Diplodus sargus reared under optimal conditions and upon exposure to a MHW. Fish were fed with four experimental diets (0%, 1.5%, 3% or 6% of dried powdered A. taxiformis) for a prophylactic period of 30 days (T30) and subsequently exposed to a Mediterranean category II MHW for 15 days (T53). Biometric data and samples were collected at T30, T53 and T61 (8 days post-MHW recovery), to assess performance indicators, biomarker responses and histopathological alterations. Results showed that A. taxiformis supplementation improved catalase and glutathione S-transferase activities and reduced lipid peroxidation promoted by the MHW, particularly in fish biofortified with 1.5% inclusion level. No histopathological alterations were observed after 30 days. Additionally, fish biofortified with 1.5% A. taxiformis exhibited increased citrate synthase activity and fish supplemented with 1.5% and 3% showed improved digestive enzyme activities (e.g., pepsin and trypsin activities). Overall, the present findings pointed to 1.5% inclusion as the optimal dosage for aquafeeds biofortification with A. taxiformis, and confirmed that this seaweed species is a promising cost-effective ingredient with functional properties and great potential for usage in a climate-smart context.

12.
Food Microbiol ; 36(2): 365-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010618

RESUMO

The microbiological responses of two bivalves species from Tagus estuary, Venerupis pullastra (native clam) and Ruditapes philippinarum (exotic clam) were investigated during 48 h of depuration and subsequent simulated transport in semi-dry conditions at two temperatures (4 and 22 °C) until reaching 50% lethal time (LT50). Regardless of temperature and species, the maintenance of clams in water for 48 h (depuration period) did not affect LT50 during transport. R. philippinarum showed higher survival rates than V. pullastra, always reaching LT50 later, especially at 4 °C. Significant differences between clams' species were found in almost all microbiological parameters. This can be related with clams' biological activity and habitat environmental conditions since both clams do not coexist in Tagus estuary. Depuration was efficient to reduce the bacterial load, particularly Escherichia coli, but not efficient to remove Vibrio spp. In both species, the growth of Vibrio spp. was inhibited at 4 °C, whereas exponential growth occurred at 22 °C. Total viable counts significantly increased in most treatments, while E. coli counts significantly decreased to undetected levels, except for non-depurated R. philippinarum simulated transported at 4 °C. Thus, this study highlights the importance of clams depuration for at least 24 h in polluted estuarine areas, followed by transport at low temperatures (4 °C).


Assuntos
Bactérias/isolamento & purificação , Bivalves/química , Bivalves/microbiologia , Manipulação de Alimentos/métodos , Frutos do Mar/microbiologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bivalves/fisiologia , Temperatura Alta , Frutos do Mar/análise
13.
J Hazard Mater ; 444(Pt A): 130387, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403442

RESUMO

Estuaries are continually threatened by anthropogenic pressures, consequently, a large group of contaminants harmful to human health affects the aquatic biota; therefore, it is necessary to monitor their quality. This study deals with the determination of a large group of compounds representing different endocrine-disrupting compounds (EDCs) classes [21 pesticides, 4 polycyclic musk fragrances, 4 UV-filters, 7 bisphenols, 6 polybrominated diphenyl ethers (PBDEs) and 8 of their methoxylated (MeO-BDEs)] in several estuarine species (fish, bivalves, crustaceans, earthworm, and macroalgae) collected seasonally along one year in two distinct areas of Tagus River estuary ("contaminated" vs. "clean" areas). The most abundant compounds found were galaxolide (HHCB) (81% positive samples; 0.04-74 ng/g ww), isoamyl 4-methoxycinnamate (IMC) (64%; 1.13-251 ng/g ww), alachlor (44%; 0.08-16 ng/g ww), and BDE-47 (36%; 0.06-2.26 ng/g ww). Polycyclic musks were the most frequent contaminants in fish (seabass, barbus, mullet, and sole) and macroalgae samples, while UV-filters were predominant in bivalves and crustaceans, and bisphenols in earthworms. Seasonal variation was verified for Σpesticides and Σmusks, with significantly higher levels in summer and autumn, whereas ΣUV-filters highest levels were found in spring and summer, and for ΣPBDEs statistically higher levels were registered in cold seasons (autumn and winter). Σbisphenols were significantly lower in spring than in the other seasons. In general, considering all species analysed in both areas, no statistically significant differences (p > 0.05) were verified between the two collection areas. Based on the estimated daily intake data, consumption of fish from this estuary is unlikely to be a human health concern, since the levels of contamination were below the toxicological threshold values. Overall, the data obtained in this study will allow regulatory authorities to identify and prioritize contaminants monitoring programs in estuaries, such as the case of bisphenol A, which was found, for the first time, in earthworm and clam species.


Assuntos
Disruptores Endócrinos , Oligoquetos , Animais , Humanos , Estuários , Estações do Ano , Oceano Atlântico , Biota , Medição de Risco
14.
Environ Toxicol Pharmacol ; 98: 104063, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36623700

RESUMO

In this study, a non-target metabolomic approach was used to investigate changes in the metabolome of juvenile meagre (Argyrosomus regius) exposed to venlafaxine (20 µg/L). A total of 24, 22 and 8 endogenous metabolites tentatively identified in liver, brain and plasma, respectively, were significantly changed in venlafaxine exposed meagre, showing tissue-dependent variations in the metabolic profile. The amino acids tryptophan, tyrosine and phenylalanine, which are related to the synthesis, availability, and expression of neurotransmitters (e.g., serotonin, dopamine, epinephrine), showed to be dysregulated by venlafaxine exposure. A high impact was observed in fish brain metabolome that showed a trend of up-regulation for most of the tentatively identified metabolites. In conclusion, the identification of possible biomarkers of exposure in fish metabolome to environmental stressors such as venlafaxine is crucial to assess early signal changes at molecular level, enabling the prevention of deleterious effects at the organism and population levels.


Assuntos
Antidepressivos , Perciformes , Animais , Cloridrato de Venlafaxina , Peixes , Metaboloma , Exposição Ambiental , Biomarcadores
15.
Sci Total Environ ; 857(Pt 2): 159491, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270380

RESUMO

Rising levels of atmospheric carbon dioxide (CO2) are driving ocean warming and acidification, which may negatively affect the nutritional quality and physiological performance of commercially important fish species. Thus, this study aimed to evaluate the effects of ocean acidification (OA; ΔpH = -0.3 units equivalent to ΔpCO2 ~ +600 µatm) and warming (OW; ΔT = +4 °C) (and combined, OAW) on the proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). After an exposure period of 75 days, growth (G), metabolism (R) and excretion (faecal, F and nitrogenous losses, U) were assessed to calculate the energy intake (C). Biometric and viscera weight data were also registered to determine animal fitness. Overall, the proximate composition and gross energy were not significantly affected by acidification and warming (alone or in combination). Weight gain, maximum and standard metabolic rates (MMR and SMR, respectively), aerobic scope (AS) and C were significantly higher in fish subjected to OA, OW and OAW than in CTR conditions. Furthermore, the highest relative growth rates (RGR), specific growth rates in terms of wet weight (SGRw) and protein (SGRp), as well as feed efficiencies (FE) occurred in fish submitted to OW and OAW. On the other hand, fish exposed to CTR conditions had significantly higher feed conversion ratio (FCR) and ammonia excretion rate (AER) than those exposed to simulated stressors. Regarding energy distribution, the highest fraction was generally allocated to growth (48-63 %), followed by excretion through faeces (36-51 %), respiration (approximately 1 %) and ammonia excretion (0.1-0.2 %) in all treatments. Therefore, ocean warming and acidification can trigger physiological responses in juvenile Senegalese sole, particularly in their energy budget, which can affect the energy flow and allocation of its population. However, and in general, this species seems highly resilient to these predicted ocean climate change stressors.


Assuntos
Linguados , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Amônia/toxicidade , Oceanos e Mares , Temperatura
16.
Sci Total Environ ; 881: 163400, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054799

RESUMO

Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.


Assuntos
Perciformes , Dourada , Animais , Mudança Climática , Exposição Dietética , Ecossistema
17.
J Sci Food Agric ; 92(7): 1545-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22577659

RESUMO

BACKGROUND: Black scabbard fish (Aphanopus carbo Lowe, 1839) is a deep-water fish resource that is highly appreciated in southern European countries and can accumulate high levels of mercury in the muscle. Currently, European legislation establishes limits for the presence of toxic contaminants in raw seafood, despite these products are generally cooked before consumption. In addition, there is still a lack of information concerning the nutritional quality and contaminants available in cooked products. Therefore, the aim of this study was to assess the effect of sex, maturation stages and three common cooking practices (steaming, grilling and frying) on the toxic elements (Hg, As, Cd and Pb) and nutritional value (chemical, elemental and fatty acid composition) of black scabbard fish. RESULTS: Few variations occurred between sexes and maturation stages, particularly in fatty acid and elemental content. Concerning cooked black scabbard fish, the greatest differences occurred in fried and grilled samples, attaining higher Hg levels, whereas steamed fish composition was closer to raw black scabbard fish. CONCLUSION: Raw and cooked black scabbard fish can be considered as a very good source of essential nutrients such as n-3 PUFA, proteins, macro and trace elements. Yet, when the fish is grilled, the Hg content may be above the limits set by EU. Considering the alterations occurred during the cooking processes, steaming seems the best procedure to cook this species.


Assuntos
Culinária/métodos , Dieta , Ácidos Graxos/análise , Peixes , Inocuidade dos Alimentos , Metais Pesados/análise , Alimentos Marinhos/análise , Fatores Etários , Animais , Humanos , Valor Nutritivo , Fatores Sexuais
18.
Conserv Physiol ; 10(1): coac048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875680

RESUMO

A mechanistic model based on Dynamic Energy Budget (DEB) theory was developed to predict the combined effects of ocean warming, acidification and decreased food availability on growth and reproduction of three commercially important marine fish species: white seabream (Diplodus sargus), zebra seabream (Diplodus cervinus) and Senegalese sole (Solea senegalensis). Model simulations used a parameter set for each species, estimated by the Add-my-Pet method using data from laboratory experiments complemented with bibliographic sources. An acidification stress factor was added as a modifier of the somatic maintenance costs and estimated for each species to quantify the effect of a decrease in pH from 8.0 to 7.4 (white seabream) or 7.7 (zebra seabream and Senegalese sole). The model was used to project total length of individuals along their usual lifespan and number of eggs produced by an adult individual within one year, under different climate change scenarios for the end of the 21st century. For the Intergovernmental Panel on Climate Change SSP5-8.5, ocean warming led to higher growth rates during the first years of development, as well as an increase of 32-34% in egg production, for the three species. Ocean acidification contributed to reduced growth for white seabream and Senegalese sole and a small increase for zebra seabream, as well as a decrease in egg production of 48-52% and 14-33% for white seabream and Senegalese sole, respectively, and an increase of 4-5% for zebra seabream. The combined effect of ocean warming and acidification is strongly dependent on the decrease of food availability, which leads to significant reduction in growth and egg production. This is the first study to assess the combined effects of ocean warming and acidification using DEB models on fish, therefore, further research is needed for a better understanding of these climate change-related effects among different taxonomic groups and species.

19.
Food Chem ; 397: 133780, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917781

RESUMO

Fish biofortification with natural ingredients like iodine-rich macroalgae and selenized-yeast is an excellent strategy to enhance the nutritional quality of farmed fish. This study aimed to assess the effect of frozen storage during 12-months on physicochemical quality of biofortified seabream (Sparus aurata) and carp (Cyprinus carpio). Frozen storage reduced iodine content in biofortified seabream fillets (17%), as well as selenium content in biofortified carp fillets (24%). Yet, biofortified fillets still presented enhanced iodine and selenium contents at the end of the storage period. Increased lipid oxidation (3.45 mg MDA kg-1 for seabream and 2.41 mg MDA kg-1 for carp) and decreased water holding capacity (23-29% for seabream and 14-23% for carp) was observed during storage, whereas major changes in colour and texture occurred after 45 days (seabream) and 225 days (carp) of storage. In general, biofortified fish fillets maintained their nutritional value and quality after 360 days of frozen storage.


Assuntos
Carpas , Iodo , Perciformes , Dourada , Selênio , Animais , Alimentos Marinhos/análise
20.
Food Chem Toxicol ; 152: 112218, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33882300

RESUMO

Fish fortification with iodine-rich macroalgae (Laminaria digitata) and Selenium-rich yeast is expected to promote nutritional added value of this crucial food item, contributing to a healthy and balanced diet for consumers. However, it is not known if steaming can affect these nutrient levels in fortified fish. The present study evaluates the effect of steaming on nutrients contents in fortified farmed gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio). Fortified seabream presented enhanced I, Se and Fe contents, whereas fortified carp presented enhanced I, Se and Zn contents. Steaming resulted in increased I and Se contents in fortified seabream, and increased Fe and Zn levels in fortified carp, with higher elements true retention values (TRVs >90%). The consumption of 150 g of steamed fortified seabream contributes to a significant daily intake (DI) of I (up to 12%) and Se (up to >100%). On the other hand, steamed fortified carp contributes to 19-23% of I DI and 30%-71% of Se DI. These results demonstrate that steaming is a healthy cooking method, maintaining the enhanced nutritional quality of fortified fish. Moreover, the present fortification strategy is a promising solution to develop high-quality farmed fish products to overcome nutritional deficiencies.


Assuntos
Culinária/métodos , Alimentos Fortificados/análise , Iodo/análise , Valor Nutritivo , Alimentos Marinhos/análise , Selênio/análise , Animais , Aquicultura , Carpas , Temperatura Alta , Dourada , Alga Marinha , Água/química , Leveduras
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa