Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356271

RESUMO

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid ß-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.

2.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216253

RESUMO

In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fatores Imunológicos/metabolismo , Lipídeos/fisiologia , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Proteínas/metabolismo , Animais , Imunidade/fisiologia , Inflamação/metabolismo , Lipidômica/métodos , Metaboloma/fisiologia , Camundongos , Proteoma/metabolismo , Células RAW 264.7 , Transdução de Sinais/fisiologia
3.
Foods ; 12(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37107420

RESUMO

The microalga Chlorella vulgaris is a popular food ingredient widely used in the industry, with an increasing market size and value. Currently, several edible strains of C. vulgaris with different organoleptic characteristics are commercialized to meet consumer needs. This study aimed to compare the fatty acid (FA) and lipid profile of four commercialized strains of C. vulgaris (C-Auto, C-Hetero, C-Honey, and C-White) using gas- and liquid-chromatography coupled to mass-spectrometry approaches, and to evaluate their antioxidant and anti-inflammatory properties. Results showed that C-Auto had a higher lipid content compared to the other strains and higher levels of omega-3 polyunsaturated FAs (PUFAs). However, the C-Hetero, C-Honey, and C-White strains had higher levels of omega-6 PUFAs. The lipidome signature was also different between strains, as C-Auto had a higher content of polar lipids esterified to omega-3 PUFAs, while C-White had a higher content of phospholipids with omega-6 PUFAs. C-Hetero and C-Honey showed a higher content of triacylglycerols. All extracts showed antioxidant and anti-inflammatory activity, highlighting C-Auto with greater potential. Overall, the four strains of C. vulgaris can be selectively chosen as a source of added-value lipids to be used as ingredients in food and nutraceutical applications for different market needs and nutritional requirements.

4.
Metabolites ; 12(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208171

RESUMO

The prevalence of inflammatory skin diseases continues to increase with a high incidence in children and adults. These diseases are triggered by environmental factors, such as UV radiation, certain chemical compounds, infectious agents, and in some cases, people with a genetic predisposition. The pathophysiology of inflammatory skin diseases such as psoriasis or atopic dermatitis, but also of skin cancers, is the result of the activation of inflammation-related metabolic pathways and the overproduction of pro-inflammatory cytokines observed in in vitro and in vivo studies. Inflammatory skin diseases are also associated with oxidative stress, overproduction of ROS, and impaired antioxidant defense, which affects the metabolism of immune cells and skin cells (keratinocytes and fibroblasts) in systemic and skin disorders. Lipids from algae have been scarcely applied to modulate skin diseases, but they are well known antioxidant and anti-inflammatory agents. They have shown scavenging activities and can modulate redox homeostasis enzymes. They can also downmodulate key inflammatory signaling pathways and transcription factors such as NF-κB, decreasing the expression of pro-inflammatory mediators. Thus, the exploitation of algae lipids as therapeutical agents for the treatment of inflammatory skin diseases is highly attractive, being critically reviewed in the present work.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa