Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Org Biomol Chem ; 18(5): 931-940, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31922157

RESUMO

The design of glycogen phosphorylase (GP) inhibitors targeting the catalytic site of the enzyme is a promising strategy for a better control of hyperglycaemia in the context of type 2 diabetes. Glucopyranosylidene-spiro-heterocycles have been demonstrated as potent GP inhibitors, and more specifically spiro-oxathiazoles. A new synthetic route has now been elaborated through 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks' protocols, although with a revisited outcome and also rationalised with DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h, identified as one of the most potent GP inhibitors (Ki = 160 nM against RMGPb) could be produced on the gram-scale from this strategy. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h is a anti-hyperglycaemic drug candidates performing slightly better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by ∼36% at 30 mg kg-1 and ∼43% at 60 mg kg-1. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Glicogênio Fosforilase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Compostos de Espiro/farmacologia , Tiazóis/farmacologia , Animais , Glicemia/metabolismo , Ciclização , Teoria da Densidade Funcional , Glicogênio/metabolismo , Glicogênio Fosforilase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Concentração Inibidora 50 , Cinética , Lactonas/síntese química , Lactonas/química , Oxirredução , Ratos Zucker , Compostos de Espiro/síntese química , Compostos de Espiro/química , Estereoisomerismo , Temperatura , Tiazóis/síntese química , Tiazóis/química
2.
Drug Metab Dispos ; 46(3): 223-236, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269410

RESUMO

Growth factors have key roles in liver physiology and pathology, particularly by promoting cell proliferation and growth. Recently, it has been shown that in mouse hepatocytes, epidermal growth factor receptor (EGFR) plays a crucial role in the activation of the xenosensor constitutive androstane receptor (CAR) by the antiepileptic drug phenobarbital. Due to the species selectivity of CAR signaling, here we investigated epidermal growth factor (EGF) role in CAR signaling in primary human hepatocytes. Primary human hepatocytes were incubated with CITCO, a human CAR agonist, or with phenobarbital, an indirect CAR activator, in the presence or absence of EGF. CAR-dependent gene expression modulation and PXR involvement in these responses were assessed upon siRNA-based silencing of the genes that encode CAR and PXR. EGF significantly reduced CAR expression and prevented gene induction by CITCO and, to a lower extent, by phenobarbital. In the absence of EGF, phenobarbital and CITCO modulated the expression of 144 and 111 genes, respectively, in primary human hepatocytes. Among these genes, only 15 were regulated by CITCO and one by phenobarbital in a CAR-dependent manner. Conversely, in the presence of EGF, CITCO and phenobarbital modulated gene expression only in a CAR-independent and PXR-dependent manner. Overall, our findings suggest that in primary human hepatocytes, EGF suppresses specifically CAR signaling mainly through transcriptional regulation and drives the xenobiotic response toward a pregnane X receptor (PXR)-mediated mechanism.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Hepatócitos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Recoverina/metabolismo , Adulto , Idoso , Células Cultivadas , Receptores ErbB/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Oximas/farmacologia , Fenobarbital/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Transcrição Gênica/efeitos dos fármacos
3.
Hepatology ; 60(6): 1838-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24797787

RESUMO

UNLABELLED: Hepatitis C virus (HCV) genotype 3a infection poses a serious health problem worldwide. A significant association has been reported between HCV genotype 3a infections and hepatic steatosis. Nevertheless, virological characterization of genotype 3a HCV is delayed due to the lack of appropriate virus cell culture systems. In the present study, we established the first infectious genotype 3a HCV system by introducing adaptive mutations into the S310 strain. HCV core proteins had different locations in JFH-1 and S310 virus-infected cells. Furthermore, the lipid content in S310 virus-infected cells was higher than Huh7.5.1 cells and JFH-1 virus-infected cells as determined by the lipid droplet staining area. CONCLUSION: This genotype 3a infectious cell culture system may be a useful experimental model for studying genotype 3a viral life cycles, molecular mechanisms of pathogenesis, and genotype 3a-specific antiviral drug development.


Assuntos
Técnicas de Cultura de Células , Hepacivirus/fisiologia , Antivirais , Linhagem Celular , Genótipo , Gotículas Lipídicas , Testes de Sensibilidade Microbiana , Mutação , Vírion , Replicação Viral
4.
Gut ; 63(9): 1490-500, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24153249

RESUMO

OBJECTIVE: Adult primary human hepatocytes (PHHs) support the complete infection cycle of natural HCV from patients' sera. The molecular details underlying sera infectivity towards these cells remain largely unknown. Therefore, we sought to gain a deeper comprehension of these features in the most physiologically relevant culture system. DESIGN: Using kinetic experiments, we defined the optimal conditions to infect PHH and explored the link between cell organisation and permissivity. Based on their infectivity, about 120 sera were classified in three groups. Concentration of 52 analytes was measured in 79 selected sera using multiplexed immunobead-based analyte profiling. RESULTS: PHH permissivity towards HCV infection negatively correlated with cell polarisation and formation of functional bile canaliculi. PHH supported HCV replication for at least 2 weeks with de novo virus production. Depending on their reactivity, sera could be classified in three groups of high, intermediate or low infectivity toward PHH. Infectivity could not be predicted based on the donors' clinical characteristics, viral load or genotype. Interestingly, highly infectious sera displayed a specific cytokine profile with low levels of most of the 52 tested analytes. Among them, 24 cytokines/growth factors could impact hepatocyte biology and infection efficiency. CONCLUSIONS: We identified critical factors leading to efficient PHH infection by HCV sera in vitro. Overall, we showed that this cellular model provides a useful tool for studying the mechanism of HCV infection in its natural host cell, selecting highly infectious isolates, and determining the potency of drugs towards various HCV strains.


Assuntos
Hepacivirus/patogenicidade , Hepatócitos/virologia , Adulto , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Hepacivirus/metabolismo , Hepatócitos/fisiologia , Humanos , Cinética , Modelos Imunológicos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Soro/virologia
5.
Mol Pharmacol ; 86(6): 624-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25228302

RESUMO

The wingless-type MMTV integration site family (WNT)/ß-catenin/adenomatous polyposis coli (CTNNB1/APC) pathway has been identified as a regulator of drug-metabolizing enzymes in the rodent liver. Conversely, little is known about the role of this pathway in drug metabolism regulation in human liver. Primary human hepatocytes (PHHs), which are the most physiologically relevant culture system to study drug metabolism in vitro, were used to investigate this issue. This study assessed the link between cytochrome P450 expression and WNT/ß-catenin pathway activity in PHHs by modulating its activity with recombinant mouse Wnt3a (the canonical activator), inhibitors of glycogen synthase kinase 3ß, and small-interfering RNA to invalidate CTNNB1 or its repressor APC, used separately or in combination. We found that the WNT/ß-catenin pathway can be activated in PHHs, as assessed by universal ß-catenin target gene expression, leucine-rich repeat containing G protein-coupled receptor 5. Moreover, WNT/ß-catenin pathway activation induces the expression of CYP2E1, CYP1A2, and aryl hydrocarbon receptor, but not of CYP3A4, hepatocyte nuclear factor-4α, or pregnane X receptor (PXR) in PHHs. Specifically, we show for the first time that CYP2E1 is transcriptionally regulated by the WNT/ß-catenin pathway. Moreover, CYP2E1 induction was accompanied by an increase in its metabolic activity, as indicated by the increased production of 6-OH-chlorzoxazone and by glutathione depletion after incubation with high doses of acetaminophen. In conclusion, the WNT/ß-catenin pathway is functional in PHHs, and its induction in PHHs represents a powerful tool to evaluate the hepatotoxicity of drugs that are metabolized by CYP2E1.


Assuntos
Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2E1/genética , Regulação Enzimológica da Expressão Gênica , Hepatócitos/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , Adulto , Idoso , Linhagem Celular , Citocromo P-450 CYP3A/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Gastroenterology ; 144(1): 56-58.e7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22999961

RESUMO

Hepatitis C virus (HCV) genotype 3a is widespread worldwide, but no replication system exists for its study. We describe a subgenomic replicon system for HCV genotype 3a. We determined the consensus sequence of an HCV genome isolated from a patient, and constructed a subgenomic replicon using this clone. The replicon was transfected into HuH-7 cells and RNA replication was confirmed. We identified cell culture-adaptive mutations that increased colony formation multiple-fold. We have therefore established a genotype 3a replicon system that can be used to study this HCV genotype.


Assuntos
Hepacivirus/genética , Hepacivirus/fisiologia , RNA Viral/metabolismo , Replicon/genética , Replicação Viral/genética , Adaptação Fisiológica/genética , Linhagem Celular Tumoral , Ensaio de Unidades Formadoras de Colônias , Humanos , Mutação , Fenótipo
7.
Drug Metab Rev ; 45(1): 122-44, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23330545

RESUMO

Inflammation and infection have long been known to affect the activity and expression of enzymes involved in hepatic and extrahepatic drug clearance. Significant advances have been made to elucidate the molecular mechanisms underlying the complex cross-talk between inflammation and drug-metabolism alterations. The emergent role of ligand-activated transcriptional regulators, belonging to the nuclear receptor (NR) superfamily, is now well established. The NRs, pregnane X receptor, constitutive androstane receptor, retinoic X receptor, glucocorticoid receptor, and hepatocyte nuclear factor 4, and the basic helix-loop-helix/Per-ARNT-Sim family member, aryl hydrocarbon receptor, are the main regulators of the detoxification function. According to the panel of mediators secreted during inflammation, a cascade of numerous signaling pathways is activated, including nuclear factor kappa B, mitogen-activated protein kinase, and the Janus kinase/signal transducer and activator of transcription pathways. Complex cross-talk is established between these signaling pathways regulating either constitutive or induced gene expression. In most cases, a mutual antagonism between xenosensor and inflammation signaling occurs. This review focuses on the molecular and cellular mechanisms implicated in this cross-talk.


Assuntos
Inflamação/metabolismo , Receptor Cross-Talk , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Humanos , Inativação Metabólica , Inflamação/genética , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
8.
Drug Chem Toxicol ; 35(3): 241-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21939362

RESUMO

The mycotoxin, patulin (PAT), which is frequently found in apples, grapes, oranges, pear, peaches, and in apple juices, has previously been shown to be cytotoxic, genotoxic, and mutagenic. In this study, we have investigated the effect of PAT on mRNA level of pregnane X receptor (PXR), constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AhR), and their corresponding target cytochrome P450s. Using primary cultures of adult human hepatocytes, we evaluated PAT cytotoxicity on hepatocytes after 24 hours of treatment. Real time reverse-transcriptase polymerase chain reaction procedure was employed to determine the effect of PAT on receptors (PXR, CAR, and AhR) and cytochrome (CYP3A4, 2B6, 3A5, 2C9, 1A1, and 1A2) genes. Our results showed that PAT reduced hepatocyte viability. At a noncytotoxic range of PAT concentrations, PAT induced an upregulation of the PXR gene in the three treated hepatocytes cultures, whereas CAR was overexpressed in only 1 treated liver. PXR gene induction was accompanied by the enhancement of CYP2B6, 3A5, 2C9, and 3A4 expression. PAT was also found to induce an overexpression of AhR and CYP1A1 and CYP1A2 mRNA expression. These findings suggested that PAT may activate PXR and/or CAR and AhR. However, further investigations are needed to confirm nuclear receptor activation by PAT and to elucidate the molecular mechanism of PAT action.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Patulina/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Trifosfato de Adenosina/metabolismo , Análise de Variância , Sobrevivência Celular/efeitos dos fármacos , Receptor Constitutivo de Androstano , Humanos , Luciferases , Estrutura Molecular , Patulina/química , Receptor de Pregnano X , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Drug Chem Toxicol ; 35(1): 71-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21834667

RESUMO

Ochratoxin A (OTA) is a mycotoxin produced by fungi of two genera: Penicillium and Aspergillus. OTA has been shown to be nephrotoxic, hepatotoxic, teratogenic, and immunotoxic to several species of animals and to cause kidney and liver tumors in mice and rats. Biotransformation of OTA has not been entirely elucidated. Several metabolites have been characterized in vitro and/or in vivo, whereas other metabolites remain to be characterized. At present, data available regarding OTA metabolism and cytochrome inductions concern only rodents or in vitro systems. The aim of the present study was to explore the effect of OTA on mRNA expression of some cytochromes known to be regulated by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR), using primary cultures of human hepatocytes. Our results showed that OTA reduced hepatocyte viability in a dose-dependent manner. Using quantitative real-time reverse-transcription polymerase chain reaction, our study showed that treatment of primary cultured human hepatocytes with noncytotoxic increasing concentrations of OTA for 24 hours caused a significant upregulation of CYP3A4, CYP2B6, and, to a lesser extent, CYP3A5 and CYP2C9. PXR mRNA expression increased in only 1 treated liver, whereas CAR mRNA expression was not affected. OTA was found also to induce an overexpression of CYP1A1 and CYP1A2 genes accompanied by an increase in AhR mRNA expression. These findings suggest that OTA could activate PXR and AhR; however, further investigations are needed to confirm nuclear-receptor activation by OTA.


Assuntos
Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Ocratoxinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Ocratoxinas/administração & dosagem , Ocratoxinas/metabolismo , Receptor de Pregnano X , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Esteroides/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Int J Toxicol ; 31(1): 86-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21994236

RESUMO

Aflatoxin B1 (AFB1), one of the most common mycotoxins found in human foods and animal feed, is principally hepatotoxic and hepatocarcinogenic. The aim of the present study was to explore the effect of AFB1 on messenger RNA (mRNA) expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR) and some of their target cytochromes using primary cultures of human hepatocytes. Our results showed that AFB1, at noncytotoxic increasing concentrations, caused a significant upregulation of cytochrome P 2B6 (CYP2B6), CYP3A5, and to a lesser extent CYP3A4 and CYP2C9. Pregnane X receptor and CAR mRNA expression increased in the 3 treated livers. Aflatoxin B1 was found also to induce an overexpression of CYP1A1 and CYP1A2 genes accompanied by an increase in AhR mRNA expression. These findings suggest that AFB1 could activate PXR, CAR, and AhR; however, further investigations are needed to confirm nuclear receptor activation by AFB1.


Assuntos
Aflatoxina B1/toxicidade , Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Receptor Constitutivo de Androstano , Sistema Enzimático do Citocromo P-450/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Pregnano X , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética
11.
Gastroenterology ; 138(3): 1134-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19944696

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection leads to progressive liver disease, frequently culminating in fibrosis and hepatocellular carcinoma. The mechanisms underlying liver injury in chronic hepatitis C are poorly understood. This study evaluated the role of vascular endothelial growth factor (VEGF) in hepatocyte polarity and HCV infection. METHODS: We used polarized hepatoma cell lines and the recently described infectious HCV Japanese fulminant hepatitis (JFH)-1 cell culture system to study the role of VEGF in regulating hepatoma permeability and HCV infection. RESULTS: VEGF negatively regulates hepatocellular tight junction integrity and cell polarity by a novel VEGF receptor 2-dependent pathway. VEGF reduced hepatoma tight junction integrity, induced a re-organization of occludin, and promoted HCV entry. Conversely, inhibition of hepatoma expressed VEGF with the receptor kinase inhibitor sorafenib or with neutralizing anti-VEGF antibodies promoted polarization and inhibited HCV entry, showing an autocrine pathway. HCV infection of primary hepatocytes or hepatoma cell lines promoted VEGF expression and reduced their polarity. Importantly, treatment of HCV-infected cells with VEGF inhibitors restored their ability to polarize, showing a VEGF-dependent pathway. CONCLUSIONS: Hepatic polarity is critical to normal liver physiology. HCV infection promotes VEGF expression that depolarizes hepatoma cells, promoting viral transmission and lymphocyte migration into the parenchyma that may promote hepatocyte injury.


Assuntos
Carcinoma Hepatocelular/virologia , Polaridade Celular , Hepacivirus/patogenicidade , Neoplasias Hepáticas/virologia , Junções Íntimas/virologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Internalização do Vírus , Comunicação Autócrina , Benzenossulfonatos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Niacinamida/análogos & derivados , Ocludina , Permeabilidade , Compostos de Fenilureia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Sorafenibe , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Hepatology ; 49(6): 2068-79, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19437491

RESUMO

The pregnane X receptor (PXR) initially isolated as a nuclear receptor regulating xenobiotic and drug metabolism and elimination, seems to play an endobiotic role by affecting lipid homeostasis. In mice, PXR affects lipid homeostasis and increases hepatic deposit of triglycerides. In this study, we show that, in human hepatocyte, PXR activation induces an increase of de novo lipogenesis through the up-regulation of S14. S14 was first identified as a thyroid-responsive gene and is known to transduce hormone-related and nutrient-related signals to genes involved in lipogenesis through a molecular mechanism not yet elucidated. We demonstrate that S14 is a novel transcriptional target of PXR. In addition, we report an increase of fatty acid synthase (FASN) and adenosine triphosphate citrate lyase genes expression after PXR activation in human hepatocyte, leading to an increase of fatty acids accumulation and de novo lipogenesis. RNA interference of the expression of S14 proportionally decreases the FASN induction, whereas S14 overexpression in human hepatic cells provokes an increase of fatty acids accumulation and lipogenesis. These results demonstrate for the first time that xenobiotic or drug-activated PXR promote aberrant hepatic de novo lipogenesis via activation of the nonclassical S14 pathway. In addition, these data suggest that the up-regulation of S14 by PXR may promote aberrant hepatic lipogenesis and hepatic steatosis in human hepatocytes.


Assuntos
Hepatócitos/metabolismo , Lipogênese , Proteínas Nucleares/fisiologia , Receptores de Esteroides/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Receptor de Pregnano X
13.
Int J Toxicol ; 29(3): 326-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20448266

RESUMO

We have recently demonstrated that the alkaloid colchicine (COL) inhibits glucocorticoid receptor (GR) transcriptional activity. In addition, we described proteasome-mediated degradation of GR in COL-treated HeLa cells. While these effects were previously attributed to cell cycle arrest in G2/M phase, this explanation is not applicable for nonproliferating cells such as human hepatocytes (HH). In the current study, we compared COL-mediated microtubule disruption and cell cycle arrest with selected GR functions in HeLa cells and HH as models of proliferating and quiescent cells, respectively. Microtubule disruption led to irreversible decrease in GR binding capacity and protein level in HeLa cells. None of the parameters was restored 24 hours after COL withdrawal. In contrast, dexamethasone (DEX) binding was increased in HH at the beginning of the treatment, with following transient activation of extracellular signal-regulated kinase (ERK). The findings of these investigations emphasize the GR-signaling differences between primary and transformed cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Receptores de Glucocorticoides/fisiologia , Transdução de Sinais/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Ciclo Celular/efeitos dos fármacos , Colchicina/farmacologia , Dexametasona/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citometria de Fluxo , Células HeLa , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Ligantes , Microscopia de Fluorescência , Microtúbulos/ultraestrutura , Receptores de Glucocorticoides/metabolismo , Fatores de Tempo
14.
J Hepatol ; 51(1): 114-26, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19443070

RESUMO

BACKGROUND/AIMS: The aim of this study was to identify human liver proteins that are associated with different stages of liver development. METHODS: We collected liver samples from 14 fetuses between 14 and 41 weeks of development, one child and four adults. Proteins which exhibited consistent and significant variations during development by two-dimensional differential in gel electrophoresis (2D-DIGE) were subjected to peptide mass fingerprint analysis by MALDI-TOF mass spectrometry. Real-time PCR analysis confirmed, at the transcriptional level, the data obtained by the proteomic approach. RESULTS: Among a total of 80 protein spots showing differential expression, we identified 42 different proteins or polypeptide chains, of which 26 were upregulated and 16 downregulated in developing in comparison to adult liver. These proteins could be classified in specific groups according to their function. By comparing their temporal expression profiles, we identified protein groups that were associated with different developmental stages of human fetal liver and suggest that the changes in protein expression observed during the 20- to 36-week time window play a pivotal role in liver development. CONCLUSIONS: The identification of these proteins may represent good markers of human liver and stem cells differentiation.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Fígado/química , Fígado/embriologia , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto , Canais de Cálcio/análise , Canais de Cálcio/fisiologia , Chaperonina com TCP-1 , Chaperoninas/análise , Chaperoninas/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Fígado/metabolismo , Proteínas/análise , Proteínas/fisiologia , RNA Mensageiro/análise , Canais de Cátion TRPV/análise , Canais de Cátion TRPV/fisiologia
15.
J Virol ; 82(1): 569-74, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942559

RESUMO

Hepatitis C virus-positive serum (HCVser, genotypes 1a to 3a) or HCV cell culture (JFH1/HCVcc) infection of primary normal human hepatocytes was assessed by measuring intracellular HCV RNA strands. Anti-CD81 antibodies and siRNA-CD81 silencing markedly inhibited (>90%) HCVser infection irrespective of HCV genotype, viral load, or liver donor, while hCD81-large intracellular loop (LEL) had no effect. However, JFH1/HCVcc infection of hepatocytes was modestly inhibited (40 to 60%) by both hCD81-LEL and anti-CD81 antibodies. In conclusion, CD81 is involved in HCVser infection of human hepatocytes, and comparative studies of HCVser versus JFH1/HCVcc infection of human hepatocytes and Huh-7.5 cells revealed that the cell-virion combination is determinant of the entry process.


Assuntos
Antígenos CD/fisiologia , Hepacivirus/fisiologia , Hepatócitos/virologia , Receptores Virais/fisiologia , Internalização do Vírus , Adolescente , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/imunologia , Células Cultivadas , Feminino , Inativação Gênica , Hepatócitos/química , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/análise , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/imunologia , Tetraspanina 28
16.
J Virol ; 82(17): 8797-811, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18579596

RESUMO

Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hepacivirus/fisiologia , Hepacivirus/patogenicidade , Internalização do Vírus , Antígenos CD/análise , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Claudina-1 , Técnica Indireta de Fluorescência para Anticorpo , Genes Reporter , Hepacivirus/genética , Humanos , Isoenzimas/metabolismo , Rim/citologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Luciferases/metabolismo , Proteínas de Membrana/análise , Plasmídeos , Receptores Virais/análise , Receptores Virais/fisiologia , Receptores Depuradores Classe B/análise , Transfecção
17.
Mol Pharmacol ; 73(2): 451-60, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17978169

RESUMO

Human cytochrome P450 2A6 (CYP2A6) metabolizes various clinically relevant compounds, including nicotine- and tobacco-specific procarcinogens; however, transcriptional regulation of this gene is poorly understood. We investigated the role of the glucocorticoid receptor (GR) in transcriptional regulation of CYP2A6. Dexamethasone (DEX) increased CYP2A6 mRNA and protein levels in human hepatocytes in primary culture. This effect was attenuated by the GR receptor antagonist mifepristone (RU486; 17beta-hydroxy-11beta-[4-dimethylamino phenyl]-17alpha-[1-propynyl]estra-4,9-dien-3-one), suggesting that induction of CYP2A6 by DEX was mediated by the GR. In gene reporter assays, DEX caused dose-dependent increases in luciferase activity that was also prevented by RU486 and progressive truncations of the CYP2A6 promoter delineated DEX-responsiveness to a -95 to +12 region containing an hepatic nuclear factor 4 (HNF4) alpha response element (HNF4-RE). Mutation of the HNF4-RE abrogated HNF4alpha- and DEX-mediated transactivation of CYP2A6. In addition, overexpression of HNF4alpha increased CYP2A6 transcriptional activity by 3-fold. DEX increased HNF4alpha mRNA levels by 4-fold; however, the amount of HNF4alpha nuclear protein was unaltered. Electrophoretic mobility shift, chromatin immunoprecipitation (ChIP), and streptavidin DNA binding assays revealed that DEX increased binding of HNF4alpha to the HNF4-RE and that an interaction of GR and HNF4alpha occurred at this site. Moreover, ChIP assays indicated that histone H4 acetylation of the CYP2A6 proximal promoter chromatin was increased by DEX that may allow for increased binding of HNF4alpha to the HNF4-RE in human hepatocytes. These findings indicate that increased expression of CYP2A6 by DEX is mediated by the GR via a nonconventional transcriptional mechanism involving interaction of HNF4alpha with an HNF4-RE rather than a glucocorticoid response element.


Assuntos
Hidrocarboneto de Aril Hidroxilases/biossíntese , Dexametasona/farmacologia , Fator 4 Nuclear de Hepatócito/metabolismo , Oxigenases de Função Mista/biossíntese , Regiões Promotoras Genéticas/fisiologia , Receptores de Glucocorticoides/metabolismo , Regulação para Cima/fisiologia , Hidrocarboneto de Aril Hidroxilases/genética , Células Cultivadas , Citocromo P-450 CYP2A6 , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Células HeLa , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores de Glucocorticoides/genética , Regulação para Cima/efeitos dos fármacos
18.
J Clin Invest ; 115(1): 177-86, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15630458

RESUMO

Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16alpha-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16alpha-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D(3). Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between -326 and -142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D-responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D(3) hormonal activity and calcium homeostasis through the activation of PXR.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica , Osteomalacia/induzido quimicamente , Osteomalacia/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Esteroide Hidroxilases/genética , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/sangue , Sistema Enzimático do Citocromo P-450/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Osteomalacia/metabolismo , Receptor de Pregnano X , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores de Esteroides/agonistas , Rifampina/farmacologia , Esteroide Hidroxilases/biossíntese , Esteroide Hidroxilases/sangue , Esteroide Hidroxilases/química , Ativação Transcricional/genética , Elemento de Resposta à Vitamina D/genética , Vitamina D3 24-Hidroxilase
19.
Biochem Pharmacol ; 75(2): 580-8, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17959153

RESUMO

SP600125, a specific inhibitor of c-Jun-N-Terminal kinase (JNK), was reported as a ligand and antagonist of aryl hydrocarbon receptor (AhR) [Joiakim A, Mathieu PA, Palermo C, Gasiewicz TA, Reiners Jr JJ. The Jun N terminal kinase inhibitor SP600125 is a ligand and antagonist of the aryl hydrocarbon receptor. Drug Metab Dispos 2003;31(11):1279-82]. Here we show that SP600125 is not an antagonist but a partial agonist of human AhR. SP600125 significantly induced CYP1A1 and CYP1A2 mRNAs in primary human hepatocytes and CYP1A1 mRNA in human hepatoma cells HepG2. This effect was abolished by resveratrol, an antagonist of AhR. Consistent with the recent report, SP600125 dose-dependently inhibited CYP1A1 and CYP1A2 genes induction by a prototype AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human hepatocytes. Moreover, SP600125 displayed typical behavior of a partial agonist in HepG2 cells transiently transfected with a reporter plasmid containing two inverted repeats of the dioxin responsive element or with a plasmid containing 5'-flanking region of human CYP1A1 gene. SP600125 transactivated the reporter plasmids with EC(50) of 0.005 and 1.89 microM, respectively. On the other hand, TCDD-dependent transactivation of the reporter plasmids was inhibited by SP600125 with IC(50) values of 1.54 and 2.63 microM, respectively. We also tested, whether the effects of SP600125 are due to metabolism. Using liquid chromatography/mass spectrometry approach, we observed formation of two minor monohydroxylated metabolites of SP600125 in human hepatocytes, human liver microsomes but not in HepG2 cells. These data imply that biotransformation is not responsible for the effects of SP600125 on AhR signaling. In conclusion, we demonstrate that SP600125 is a partial agonist of human AhR, which induces CYP1A genes.


Assuntos
Antracenos/farmacologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Antracenos/metabolismo , Células Cultivadas , Humanos , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Dibenzodioxinas Policloradas/antagonistas & inibidores
20.
Drug Metab Dispos ; 36(5): 851-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18256203

RESUMO

Midazolam (MDZ) is one of the most commonly used in vivo and in vitro CYP3A4 probe substrates for drug-drug interactions (DDI) studies. The major metabolic pathway of MDZ in humans consists of the CYP3A4-mediated 1'-hydroxylation followed by urinary excretion as 1'-O-glucuronide derivative. In the present study, following incubation of MDZ with human liver microsomes supplemented with UDP-glucuronic acid, two major high-performance liquid chromatography (HPLC) peaks were isolated. HPLC and liquid chromatography/tandem mass spectrometry analyses identified these two metabolites as quaternary direct N-glucuronides of MDZ, thus revealing an additional metabolic pathway for MDZ. (1)H NMR spectrometry studies were performed showing that these two glucuronides were beta-N-glucuronides, which could be considered as two different conformers of the same molecule. According to molecular modeling experiments, the two glucuronide derivatives could be involved in atropoisomerism equilibrium. The formation of MDZ N-glucuronide exhibited moderate intersubject variability (at most 4.5-fold difference, n = 10). Among the recombinant human UDP glucuronosyltransferase (UGT) isoforms tested, only isoform UGT1A4 catalyzed the N-glucuronidation of MDZ fitting a Michaelis-Menten model. K(m) and V(max) values were 29.9 +/- 2.4 microM and 659.6 +/- 19.0 pmol/min/mg protein, respectively. The N-glucuronide derivative was found in human hepatocytes incubated under control conditions but also in the presence of the well known CYP3A4 inhibitor, ketoconazole. In the context of the in vitro study of CYP3A4-mediated DDI using MDZ and ketoconazole, direct MDZ N-glucuronidation may partly compensate the decrease in MDZ metabolic clearance caused by the addition of the inhibitor, thus potentially leading to underestimation, at least in vitro, of the extent of DDI.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Adolescente , Adulto , Idoso , Células Cultivadas , Inibidores do Citocromo P-450 CYP3A , Interações Medicamentosas , Feminino , Humanos , Cetoconazol/metabolismo , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa