Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787764

RESUMO

Sphingomyelin plays a key role in cellular cholesterol homeostasis by binding to and sequestering cholesterol in the plasma membrane. We discovered that synthesis of very long chain (VLC) sphingomyelins is inversely regulated by cellular cholesterol levels; acute cholesterol depletion elicited a rapid induction of VLC-sphingolipid synthesis, increased trafficking to the Golgi apparatus and plasma membrane, while cholesterol loading reduced VLC-sphingolipid synthesis. This sphingolipid-cholesterol metabolic axis is distinct from the sterol responsive element binding protein pathway as it requires ceramide synthase 2 (CerS2) activity, epidermal growth factor receptor signaling, and was unaffected by inhibition of protein translation. Depletion of VLC-ceramides reduced plasma membrane cholesterol content, reduced plasma membrane lipid packing, and unexpectedly resulted in the accumulation of cholesterol in the cytoplasmic leaflet of the lysosome membrane. This study establishes the existence of a cholesterol-sphingolipid regulatory axis that maintains plasma membrane lipid homeostasis via regulation of sphingomyelin synthesis and trafficking.


Assuntos
Membrana Celular , Membranas Intracelulares , Esfingomielinas , Esfingosina N-Aciltransferase , Citoplasma , Homeostase , Esfingomielinas/biossíntese , Esfingosina N-Aciltransferase/metabolismo , Colesterol , Receptores ErbB/metabolismo
2.
Cell Rep ; 42(9): 113081, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37689067

RESUMO

Sphingolipids have key functions in membrane structure and cellular signaling. Ceramide is the central molecule of the sphingolipid metabolism and is generated by ceramide synthases (CerS) in the de novo pathway. Despite their critical function, mechanisms regulating CerS remain largely unknown. Using an unbiased proteomics approach, we find that the small heat shock protein 27 (Hsp27) interacts specifically with CerS1 but not other CerS. Functionally, our data show that Hsp27 acts as an endogenous inhibitor of CerS1. Wild-type Hsp27, but not a mutant deficient in CerS1 binding, inhibits CerS1 activity. Additionally, silencing of Hsp27 enhances CerS1-generated ceramide accumulation in cells. Moreover, phosphorylation of Hsp27 modulates Hsp27-CerS1 interaction and CerS1 activity in acute stress-response conditions. Biologically, we show that Hsp27 knockdown impedes mitochondrial function and induces lethal mitophagy in a CerS1-dependent manner. Overall, we identify an important mode of CerS1 regulation and CerS1-mediated mitophagy through protein-protein interaction with Hsp27.


Assuntos
Ceramidas , Proteínas de Choque Térmico HSP27 , Ceramidas/metabolismo , Proteínas de Choque Térmico HSP27/genética , Mitocôndrias/metabolismo , Mitofagia , Esfingolipídeos/metabolismo , Humanos
3.
J Endocr Soc ; 6(7): bvac078, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35668995

RESUMO

Polycystic ovary syndrome (PCOS), a common endocrine disorder of women, is characterized by increased ovarian androgen production and anovulatory infertility. Genome-wide association studies (GWAS) have identified more than 20 PCOS candidate loci. One GWAS candidate locus encompasses ZNF217, a zinc finger transcription factor. Immunohistochemical staining of ovarian tissue demonstrated significantly lower staining intensity for ZNF217 protein in PCOS theca interna compared to ovarian tissue from normal ovulatory women. Immunofluorescence staining of normal and PCOS theca cells demonstrated nuclear localization of ZNF217, with lower intensity in PCOS cells. Western blotting showed reduced ZNF217 protein in PCOS theca cells compared to normal theca cells, and that treatment with forskolin, which mimics the action of luteinizing hormone (LH), reduces ZNF217 expression. Lower ZNF217 expression in PCOS theca cells was confirmed by quantitative reverse transcription polymerase chain reaction. Notably, there was an inverse relationship between ZNF217 messenger RNA (mRNA) levels and theca cell androgen (dehydroepiandrosterone; DHEA) synthesis. The abundance of mRNA encoding a splice variant of DENND1A (DENND1A.V2), a PCOS candidate gene that positively regulates androgen biosynthesis, was also inversely related to ZNF217 mRNA levels. This relationship may be driven by increased miR-130b-3p, which targets DENND1A.V2 transcripts and is directly correlated with ZNF217 expression. Forced expression of ZNF217 in PCOS theca cells reduced androgen production, CYP17A1 and DENND1A.V2 mRNA, while increasing mIR-130b-3p. Conversely, knockdown of ZNF217 in normal theca cells with short hairpin RNA-expressing lentivirus particles increased DENND1A.V2 and CYP17A1 mRNA. These observations suggest that ZNF217 is part of a network of PCOS candidate genes regulating thecal cell androgen production involving DENND1A.V2 and miR-130b-3p.

4.
Sci Rep ; 9(1): 19367, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852961

RESUMO

The complexity of TP73 expression and its functionality, as well as the role of TP73 in tumorigenesis, unlike its cousin TP53, which is an established tumor suppressor, have remained elusive to date. In this study, we isolated two stem cell lines (HepCY & HepCO) from normal young and old human liver tissues. We determined TP73 expression in HepCY and HepCO, hepatocellular cancer (HCC) cell lines (HepG2, SNU398, SNU449 and SNU475), gastrointestinal cancer (GI) cell lines (Caco2 and HCT116) and normal skin fibroblasts cell line (HS27). Immunohistochemical analyses of TP73 expression was also performed in non-cancerous and adjacent cancerous liver tissues of HCC patients. The results show that TP73 expression is exclusive to the cancer cell lines and not the adjacent normal liver tissues. Moreover, methylation-specific PCR and bisulfite sequencing studies revealed that TP73 promoter is activated only in cancer cell lines by DNA methylation. Furthermore, ChIP assay results demonstrated that a chromosomal networking protein (CTCF) and tumor protein p53 (TP53) bind to TP73 promoter and regulate TP73 expression. Our observations demonstrate that a positive correlation in tumorigenesis exists between TP73 expression and DNA methylation in promoter regions of TP73. These findings may prove significant for the development of future diagnostic and therapeutic applications.


Assuntos
Carcinoma Hepatocelular/genética , Metilação de DNA/genética , Neoplasias Gastrointestinais/genética , Proteína Tumoral p73/genética , Células CACO-2 , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/genética
5.
Endocrinology ; 160(8): 1964-1981, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184707

RESUMO

Polycystic ovary syndrome (PCOS) is a common endocrine disorder of reproductive-age women involving overproduction of ovarian androgens and, in some cases, from the adrenal cortex. Family studies have established that PCOS is a complex heritable disorder with genetic and epigenetic components. Several small, noncoding RNAs (miRNAs) have been shown to be differentially expressed in ovarian cells and follicular fluid and in the circulation of women with PCOS. However, there are no reports of global miRNA expression and target gene analyses in ovarian theca cells isolated from normal cycling women and women with PCOS, which are key to the elucidation of the basis for the hyperandrogenemia characteristic of PCOS. With the use of small RNA deep sequencing (miR-seq), we identified 18 differentially expressed miRNAs in PCOS theca cells; of these, miR-130b-3p was predicted to target one of the PCOS genome-wide association study candidates, differentially expressed in neoplastic vs normal cells domain containing 1A (DENND1A). We previously reported that DENND1A variant 2 (DENND1A.V2), a truncated isoform of DENND1A, is upregulated in PCOS theca cells and mediates augmented androgen biosynthesis in PCOS theca cells. The comparison of miR-130b-3p in normal and PCOS theca cells demonstrated decreased miR-130b-3p expression in PCOS theca cells, which was correlated with increased DENND1A.V2, cytochrome P450 17α-hydroxylase (CYP17A1) mRNA and androgen biosynthesis. miR-130b-3p mimic studies established that increased miR130b-3p is correlated with decreased DENND1A.V2 and CYP17A1 expression. Thus, in addition to genetic factors, post-transcriptional regulatory mechanisms via miR-130b-3p underly androgen excess in PCOS. Ingenuity® Pathway Analysis Core Pathway and Network Analyses suggest a network by which miR-130b-3p, DENND1A, the luteinizing hormone/choriogonadotropin receptor, Ras-related protein 5B, and signaling pathways that they potentially target may mediate hyperandrogenism in PCOS.


Assuntos
Androgênios/biossíntese , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Fatores de Troca do Nucleotídeo Guanina/genética , MicroRNAs/análise , Síndrome do Ovário Policístico/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Hiperandrogenismo/etiologia , MicroRNAs/fisiologia , Transdução de Sinais , Células Tecais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa