Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Med Genomics ; 17(1): 78, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528593

RESUMO

BACKGROUND: Dihydropyrimidine dehydrogenase (DPD), is the initial and rate-limiting enzyme in the catabolic pathway of pyrimidines. Deleterious variants in the DPYD gene cause DPD deficiency, a rare autosomal recessive disorder. The clinical spectrum of affected individuals is wide ranging from asymptomatic to severely affected patients presenting with intellectual disability, motor retardation, developmental delay and seizures. DPD is also important as the main enzyme in the catabolism of 5-fluorouracil (5-FU) which is extensively used as a chemotherapeutic agent. Even in the absence of clinical symptoms, individuals with either complete or partial DPD deficiency face a high risk of severe and even fatal fluoropyrimidine-associated toxicity. The identification of causative genetic variants in DPYD is therefore gaining increasing attention due to their potential use as predictive markers of fluoropyrimidine toxicity. METHODS: A male infant patient displaying biochemical features of DPD deficiency was investigated by clinical exome sequencing. Bioinformatics tools were used for data analysis and results were confirmed by MLPA and Sanger sequencing. RESULTS: A novel intragenic deletion of 71.2 kb in the DPYD gene was identified in homozygosity. The deletion, DPYD(NM_000110.4):c.850 + 23455_1128 + 8811del, eliminates exons 9 and 10 and may have resulted from a non-homologous end-joining event, as suggested by in silico analysis. CONCLUSIONS: The study expands the spectrum of DPYD variants associated with DPD deficiency. Furthermore, it raises the concern that patients at risk for fluoropyrimidine toxicity due to DPYD deletions could be missed during pre-treatment genetic testing for the currently recommended single nucleotide polymorphisms.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Lactente , Humanos , Masculino , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Antimetabólitos Antineoplásicos/efeitos adversos , Fluoruracila/efeitos adversos , Testes Genéticos
2.
Mol Genet Genomic Med ; 8(3): e1090, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31943857

RESUMO

BACKGROUND: Mutations in the GBA gene that encodes the lysosomal enzyme acid ß-glucocerebrosidase cause Gaucher disease (GD), the most common lysosomal storage disorder. Most of the mutations are missense/nonsense, however, a few splicing mutations within or close to conserved consensus donor or acceptor splice sites have also been described. The aim of the study was to identify the mutation(s) in a Cypriot patient with type I GD. METHODS: The genomic DNA of the proband was screened for nine common mutations using Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. All exons and exon-intron boundaries, and the 5'UTR and 3'UTR regions of the GBA gene, were investigated by Sanger sequencing. RNA analysis was performed using standard procedures, and the abnormal transcript was further cloned into pGEM-T-Easy plasmid vector and sequenced. The relevant intronic region was further sequenced by the Sanger method to identify the genetic variant. RESULTS: A novel point mutation, g.12599C > A (c.999 + 242C > A), was detected deep in intron 7 of the GBA gene. This type of mutation has been previously described for other diseases but this is the first time, as far as we know, that it is described for GD. This mutation creates a new donor splice site leading to aberrant splicing and resulting in the insertion of the first 239nt of intron 7 as a pseudoexon in the mRNA, creating a premature stop codon. CONCLUSION: This study expands the mutation spectrum of GD and highlights the importance of RNA sequencing for the molecular diagnosis of patients bearing mutations in nonexonic regions.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Mutação Puntual , Adulto , Feminino , Doença de Gaucher/patologia , Testes Genéticos/métodos , Humanos , Íntrons , Sítios de Splice de RNA , RNA-Seq/métodos
3.
Clin Biochem ; 49(12): 885-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27129798

RESUMO

OBJECTIVES: The purpose of this study was to determine the normal range of chitotriosidase activity in the Cypriot population and the frequency of the 24bp duplication polymorphism. Furthermore, we compared the allele frequency of this polymorphism in two locations with different malaria endemicity in the past. DESIGN AND METHODS: Plasma chitotriosidase activity was measured using a fluorogenic substrate. The 24bp polymorphism was detected using PCR analysis of exon 10 of the CHIT1 gene. Additional mutations were detected using direct sequencing. RESULTS: The normal range of chitotriosidase activity was found to be 9.5-44.0nmol/ml/hr. Among 114 normal individuals genotyped for the 24bp duplication, 7% were found to be homozygous, 36% heterozygous and 57% wild type (allele frequency 0.25). The allele frequency of this polymorphism in individuals originating from two locations with different malaria endemicity in the past was not significantly different. A novel deletion mutation in the CHIT1 gene was identified associated with loss of chitotriosidase activity. This new deletion eliminates 29 nucleotides from exon 9 resulting in the generation of a premature stop codon, probably leading to the production of an aberrant protein molecule. CONCLUSIONS: The normal range of chitotriosidase activity and the allele frequency of the 24bp duplication polymorphism in the Cypriot population were found to be similar to those of other Mediterranean populations. No evidence for an association between the presence of the 24bp duplication polymorphism and susceptibility to malaria was found. A novel deletion in exon 9 of the CHIT1 gene was identified (allele frequency 0.01).


Assuntos
Biomarcadores/metabolismo , Éxons/genética , Doença de Gaucher/diagnóstico , Doença de Gaucher/genética , Hexosaminidases/genética , Deleção de Sequência/genética , Sequência de Aminoácidos , Sequência de Bases , Estudos de Coortes , Chipre/epidemiologia , Seguimentos , Doença de Gaucher/epidemiologia , Frequência do Gene , Genótipo , Voluntários Saudáveis , Humanos , Prevalência , Prognóstico
4.
Case Rep Genet ; 2016: 5208312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123349

RESUMO

Fabry disease is an X-linked lysosomal storage disorder resulting from a deficiency of the hydrolytic enzyme α-galactosidase A (α-Gal-A). It is characterized by progressive lysosomal accumulation of globotriaosylceramide (Gb3) and multisystem pathology, affecting the skin, nervous and cerebrovascular systems, kidneys, and heart. Heterozygous females typically exhibit milder symptoms and a later age of onset than males. Rarely, they may be relatively asymptomatic throughout a normal life span or may have symptoms as severe as those observed in males with the classic phenotype. We report on a 17-year-old female in whom cornea verticillata was found during a routine ophthalmological examination but with no other clinical symptoms. Leucocyte α-galactosidase activity was within the overlap range between Fabry heterozygotes and normal controls. Sanger sequencing of the GLA gene failed to reveal any pathogenic variants. Multiplex Ligation-dependent Probe Amplification (MLPA) analysis revealed a deletion of exon 7. Using a long-range PCR walking approach, we managed to identify the deletion breakpoints. The deletion spans 1182 bp, with its 5' end located within exon 6 of the GLA gene and its 3' end located 612 bp downstream of exon 7. This finding represents a novel deletion identified in the first reported Cypriot female carrier of Fabry disease.

5.
Meta Gene ; 2: 200-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25606403

RESUMO

Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in ß-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa