Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 464(7291): 1018-20, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20393557

RESUMO

Three exoplanets around the star HR 8799 have recently been discovered by means of differential imaging with large telescopes. Bright scattered starlight limits high-contrast imaging to large angular offsets, currently of the order of ten diffraction beamwidths, 10lambda/D, of the star (where lambda is the wavelength and D is the aperture diameter). Imaging faint planets at smaller angles calls for reducing the starlight and associated photon and speckle noise before detection, while efficiently transmitting nearby planet light. To carry out initial demonstrations of reduced-angle high-contrast coronagraphy, we installed a vortex coronagraph capable of reaching small angles behind a small, well-corrected telescope subaperture that provides low levels of scattered starlight. Here we report the detection of all three HR 8799 planets with the resultant small-aperture (1.5 m) system, for which only 2lambda/D separate the innermost planet from the star, with a final noise level within a factor of two of that given by photon statistics. Similar well-corrected small-angle coronagraphs should thus be able to detect exoplanets located even closer to their host stars with larger ground-based telescopes, and also allow a reduction in the size of potential space telescopes aimed at the imaging of very faint terrestrial planets.

2.
Nat Commun ; 12(1): 922, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568657

RESUMO

Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, α Centauri. Based on 75-80% of the best quality images from 100 h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of α Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around α Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes.

3.
Opt Express ; 17(3): 1902-18, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19189021

RESUMO

In this paper, after briefly reviewing the theory of vectorial vortices, we describe our technological approach to generating the necessary phase helix, and report results obtained with the first optical vectorial vortex coronagraph (OVVC) in the laboratory. To implement the geometrical phase ramp, we make use of Liquid Crystal Polymers (LCP), which we believe to be the most efficient technological path to quickly synthesize optical vectorial vortices of virtually any topological charge. With the first prototype device of topological charge 2, a maximum peak-to-peak attenuation of 1.4x10(-2) and a residual light level of 3x10(-5) at an angular separation of 3.5 lambda/d (at which point our current noise floor is reached) have been obtained at a wavelength of 1.55 microm. These results demonstrate the validity of using space-variant birefringence distributions to generate a new family of coronagraphs usable in natural unpolarized light, opening a path to high performance coronagraphs that are achromatic and have low-sensitivity to low-order wavefront aberrations.

4.
Nat Photonics ; 13: 25-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740138

RESUMO

Orbiting planets induce a weak radial velocity (RV) shift in the host star that provides a powerful method of planet detection. Importantly, the RV technique provides information about the exoplanet mass, which is unavailable with the complementary technique of transit photometry. However, RV detection of an Earth-like planet in the 'habitable zone'1 requires extreme spectroscopic precision that is only possible using a laser frequency comb (LFC)2. Conventional LFCs require complex filtering steps to be compatible with astronomical spectrographs, but a new chip-based microresonator device, the Kerr soliton microcomb3-8, is an ideal match for astronomical spectrograph resolution and can eliminate these filtering steps. Here, we demonstrate an atomic/molecular line-referenced soliton microcomb as a first in-the-field demonstration of microcombs for calibration of astronomical spectrographs. These devices can ultimately provide LFC systems that would occupy only a few cubic centimetres9,10, thereby greatly expanding implementation of these technologies into remote and mobile environments beyond the research lab.

6.
Astrobiology ; 9(1): 1-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19203238

RESUMO

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Origem da Vida , Planetas , Voo Espacial , Astronomia , Teorema de Bayes , Processamento de Imagem Assistida por Computador , Astronave , Espectrofotometria Infravermelho , Astros Celestes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa