RESUMO
Bifunctional catalysts are a major type of heterogeneous catalytic systems that have been widely investigated for biomass upgrading. In this work, Ru-catalysts based on sulfonated porous aromatic frameworks (PAFs) were used in the hydrodeoxygenation (HDO) of lignin-derived compounds: guaiacol, veratrole, and catechol. The relationship between the activity of metal nanoparticles and the content of acid sites in synthesized catalysts was studied. Herein, their synergy was demonstrated in the Ru-PAF-30-SO3H/5-COD catalyst. The results revealed that this catalytic system promoted partial hydrogenation of lignin-based compounds to ketones without any further transformations. The design of the Ru-PAF-30-SO3H/5-COD catalytic system opens a promising route to the selective conversion of lignin model compounds to cyclohexanone.
RESUMO
Bulk MoP and WP were investigated and compared in guaiacol hydrodeoxygenation to phenol. The catalysts obtained were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and temperature-programmed desorption of NH3 (NH3-TPD) analyses. MoP was shown to be more active than WP. However, WP was more selective in phenol production. Guaiacol conversion using MoP was 90-98%. The highest selectivity for phenol was 66% (340 °C). By increasing the temperature to 380 °C, phenol selectivity decreased to 31%, while selectivity for cyclohexane increased to 29%. Thus, MoP was active not only in hydrodeoxygenation but also in hydrogenation. Guaiacol conversion over WP was 53-90%. The highest selectivity for phenol was 84% (380 °C). Hydrogenation products were also detected but with low selectivity. Thus, WP was active in the partial hydrodeoxygenation of guaiacol and was more suitable for the selective production of phenol than MoP. It was shown that after a 30 h recycling test, the activity of MoP did not decrease (1st and 5th cycle conversion value was 91%), while the activity of WP reduced (1st and 5th cycle conversion values were 81 and 64%, respectively). However, the activity of both catalysts at average conversion values decreased. Selectivity for phenol remained unaltered over both catalysts. It was supposed that catalyst activity decreased due to partial destruction of the crystalline phosphide phase and the surface phosphide oxidation to phosphate.
RESUMO
Heterogeneous Pd-containing nanocatalysts, based on poly (propylene imine) dendrimers immobilized in silica pores and networks, obtained by co-hydrolysis inâ situ, have been synthesized and examined in the hydrogenation of various unsaturated compounds. The catalyst activity and selectivity were found to strongly depend on the carrier structure as well as on the substrate electron and geometric features. Thus, mesoporous catalyst, synthesized in presence of both polymeric template and tetraethoxysilane, revealed the maximum activity in the hydrogenation of various styrenes, including bulky and rigid stilbene and its isomers, reaching TOF values of about 230000â h-1. Other mesoporous catalyst, synthesized in the presence of polymeric template, but without addition of Si(OEt)4, provided the trans-cyclooctene formation with the selectivity of 90-95 %, appearing as similar to homogeneous dendrimer-based catalysts. Microporous catalyst, obtained only on the presence of Si(OEt)4, while dendrimer molecules acting as both anchored ligands and template, demonstrated the maximum activity in the hydrogenation of terminal linear alkynes and conjugated dienes, reaching TOF values up to 400000â h-1. Herein the total selectivity on alkene in the case of terminal alkynes and conjugated dienes reached 95-99 % even at hydrogen pressure of 30â atm. The catalysts synthesized can be easily isolated from reaction products and recycled without significant loss of activity.