Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2309743120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922328

RESUMO

Oxidation of phosphite (HPO32-) to phosphate (HPO42-) releases electrons at a very low redox potential (E0'= -690 mV) which renders phosphite an excellent electron donor for microbial energy metabolism. To date, two pure cultures of strictly anaerobic bacteria have been isolated that run their energy metabolism on the basis of phosphite oxidation, the Gram-negative Desulfotignum phosphitoxidans (DSM 13687) and the Gram-positive Phosphitispora fastidiosa (DSM 112739). Here, we describe the key enzyme for dissimilatory phosphite oxidation in these bacteria. The enzyme catalyzed phosphite oxidation in the presence of adenosine monophosphate (AMP) to form adenosine diphosphate (ADP), with concomitant reduction of oxidized nicotinamide adenine dinucleotide (NAD+) to reduced nicotinamide adenine dinucleotide (NADH). The enzyme of P. fastidiosa was heterologously expressed in Escherichia coli. It has a molecular mass of 35.2 kDa and a high affinity for phosphite and NAD+. Its activity was enhanced more than 100-fold by addition of ADP-consuming adenylate kinase (myokinase) to a maximal activity between 30 and 80 mU x mg protein-1. A similar NAD-dependent enzyme oxidizing phosphite to phosphate with concomitant phosphorylation of AMP to ADP is found in D. phosphitoxidans, but this enzyme could not be heterologously expressed. Based on sequence analysis, these phosphite-oxidizing enzymes are related to nucleotide-diphosphate-sugar epimerases and indeed represent AMP-dependent phosphite dehydrogenases (ApdA). A reaction mechanism is proposed for this unusual type of substrate-level phosphorylation reaction.


Assuntos
NAD , Fosfitos , NAD/metabolismo , Fosfitos/metabolismo , Oxirredução , Monofosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Fosfatos
2.
Chembiochem ; 24(19): e202300408, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37503755

RESUMO

The N2A segment of titin functions as a pivotal hub for signal transduction and interacts with various proteins involved in structural support, chaperone activities, and transcriptional regulation. Notably, the "unique N2A" (UN2A) subdomain has been shown to interact with the stress-regulated cardiac ankyrin repeat protein (CARP), which contributes to the regulation of sarcomeric stiffness. Previously, the UN2A domain's three-dimensional structure was modelled based on its secondary structure content identified by NMR spectroscopy, considering the domain in isolation. In this study, we report experimental long-range distance distributions by electron paramagnetic resonance (EPR) spectroscopy between the three helixes within the UN2A domain linked to the immunoglobulin domain I81 in the presence and absence of CARP. The data confirm the central three-helix bundle fold of UN2A and show that this adopts a compact and stable conformation in absence of CARP. After binding to CARP, no significant conformational change was observed, suggesting that the UN2A domain retains its structure upon binding to CARP thereby, mediating the interaction approximately as a rigid-body.

3.
J Muscle Res Cell Motil ; 44(4): 255-270, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37258982

RESUMO

The thick filament-associated A-band region of titin is a highly repetitive component of the titin chain with important scaffolding properties that support thick filament assembly. It also has a demonstrated link to human disease. Despite its functional significance, it remains a largely uncharacterized part of the titin protein. Here, we have performed an analysis of sequence and structure conservation of A-band titin, with emphasis on poly-FnIII tandem components. Specifically, we have applied multi-dimensional sequence pairwise similarity analysis to FnIII domains and complemented this with the crystallographic elucidation of the 3D-structure of the FnIII-triplet A84-A86 from the fourth long super-repeat in the C-zone (C4). Structural models serve here as templates to map sequence conservation onto super-repeat C4, which we show is a prototypical representative of titin's C-zone. This templating identifies positionally conserved residue clusters in C super-repeats with the potential of mediating interactions to thick-filament components. Conservation localizes to two super-repeat positions: Ig domains in position 1 and FnIII domains in position 7. The analysis also allows conclusions to be drawn on the conserved architecture of titin's A-band, as well as revisiting and expanding the evolutionary model of titin's A-band.


Assuntos
Proteínas Musculares , Sarcômeros , Humanos , Conectina/metabolismo , Proteínas Musculares/metabolismo , Sarcômeros/metabolismo
4.
EMBO Rep ; 22(10): e48018, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34402565

RESUMO

Striated muscle undergoes remodelling in response to mechanical and physiological stress, but little is known about the integration of such varied signals in the myofibril. The interaction of the elastic kinase region from sarcomeric titin (A168-M1) with the autophagy receptors Nbr1/p62 and MuRF E3 ubiquitin ligases is well suited to link mechanosensing with the trophic response of the myofibril. To investigate the mechanisms of signal cross-talk at this titin node, we elucidated its 3D structure, analysed its response to stretch using steered molecular dynamics simulations and explored its functional relation to MuRF1 and Nbr1/p62 using cellular assays. We found that MuRF1-mediated ubiquitination of titin kinase promotes its scaffolding of Nbr1/p62 and that the process can be dynamically down-regulated by the mechanical unfolding of a linker sequence joining titin kinase with the MuRF1 receptor site in titin. We propose that titin ubiquitination is sensitive to the mechanical state of the sarcomere, the regulation of sarcomere targeting by Nbr1/p62 being a functional outcome. We conclude that MuRF1/Titin Kinase/Nbr1/p62 constitutes a distinct assembly that predictably promotes sarcomere breakdown in inactive muscle.


Assuntos
Autofagia , Sarcômeros , Conectina/genética , Conectina/metabolismo , Músculo Esquelético/metabolismo , Sarcômeros/metabolismo , Ubiquitinação
5.
Mol Microbiol ; 115(2): 238-254, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33047379

RESUMO

The role of post-transcriptional RNA modification is of growing interest. One example is the addition of non-templated uridine residues to the 3' end of transcripts. In mammalian systems, uridylation is integral to cell cycle control of histone mRNA levels. This regulatory mechanism is dependent on the nonsense-mediated decay (NMD) component, Upf1, which promotes histone mRNA uridylation and degradation in response to the arrest of DNA synthesis. We have identified a similar system in Aspergillus nidulans, where Upf1 is required for the regulation of histone mRNA levels. However, other NMD components are also implicated, distinguishing it from the mammalian system. As in human cells, 3' uridylation of histone mRNA is induced upon replication arrest. Disruption of this 3' tagging has a significant but limited effect on histone transcript regulation, consistent with multiple mechanisms acting to regulate mRNA levels. Interestingly, 3' end degraded transcripts are also subject to re-adenylation. Both mRNA pyrimidine tagging and re-adenylation are dependent on the same terminal-nucleotidyltransferases, CutA, and CutB, and we show this is consistent with the in vitro activities of both enzymes. Based on these data we argue that mRNA 3' tagging has diverse and distinct roles associated with transcript degradation, functionality and regulation.


Assuntos
Aspergillus nidulans/genética , Histonas/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas/genética , Replicação do DNA/fisiologia , Glutationa/análogos & derivados , Glutationa/genética , Glutationa/metabolismo , Histonas/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Uridina/química
6.
J Struct Biol ; 212(1): 107596, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758527

RESUMO

Shiga toxin-encoding bacteriophages transfer Shiga toxin genes to Escherichia coli and are responsible for the emergence of pathogenic bacterial strains that cause severe foodborne human diseases. Gene vb_24B_21 is the most highly conserved gene across sequenced Shiga bacteriophages. Protein vb_24B_21 (also termed 933Wp42 and NanS-p) is a carbohydrate esterase with homology to the E. coli chromosomally encoded NanS that deacetylates sialic acid in the intestinal mucus. To assist the functional characterization of vb_24B_21, we have studied its molecular structure by homology modelling its esterase domain and by elucidating the crystal structure of its uncharacterized C-terminal domain at the atomic resolution of 0.97 Å. Our modelling confirms that NanS from the E. coli host is the closest structurally characterized homolog to the esterase domain of vb_24B_21. Like NanS, vb_24B_21 has an atypical active site, comprising a simple catalytic dyad Ser-His and a divergent oxyanion hole. The crystal structure of the C-terminal domain reveals a lectin-like, jelly-roll ß-sandwich fold. The domain displays a prominent cleft that bioinformatics analysis predicts to be a carbohydrate binding site without catalytic properties. In summary, our study indicates that vb_24B_21 is a NanS-like atypical esterase that is assisted by a carbohydrate-binding module of yet undetermined binding specificity.


Assuntos
Bacteriófagos/genética , Carboidratos/genética , Esterases/genética , Toxina Shiga/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Cromossomos Bacterianos/genética , Escherichia coli/genética , Escherichia coli/virologia , Domínios Proteicos/genética
7.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484291

RESUMO

The development of cell culture systems for the naturalistic propagation, self-renewal and differentiation of cells ex vivo is a high goal of molecular engineering. Despite significant success in recent years, the high cost of up-scaling cultures, the need for xeno-free culture conditions, and the degree of mimicry of the natural extracellular matrix attainable in vitro using designer substrates continue to pose obstacles to the translation of cell-based technologies. In this regard, the ZT biopolymer is a protein-based, stable, scalable, and economical cell substrate of high promise. ZT is based on the naturally occurring assembly of two human proteins: titin-Z1Z2 and telethonin. These protein building blocks are robust scaffolds that can be conveniently functionalized with full-length proteins and bioactive peptidic motifs by genetic manipulation, prior to self-assembly. The polymer is, thereby, fully encodable. Functionalized versions of the ZT polymer have been shown to successfully sustain the long-term culturing of human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), and murine mesenchymal stromal cells (mMSCs). Pluripotency of hESCs and hiPSCs was retained for the longest period assayed (4 months). Results point to the large potential of the ZT system for the creation of a modular, pluri-functional biomaterial for cell-based applications.


Assuntos
Biopolímeros/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Células-Tronco Pluripotentes/metabolismo
8.
J Biol Chem ; 290(32): 19527-39, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26063803

RESUMO

We present the crystal structure and biochemical characterization of Escherichia coli YbiB, a member of the hitherto uncharacterized TrpD2 protein family. Our results demonstrate that the functional diversity of proteins with a common fold can be far greater than predictable by computational annotation. The TrpD2 proteins show high structural homology to anthranilate phosphoribosyltransferase (TrpD) and nucleoside phosphorylase class II enzymes but bind with high affinity (KD = 10-100 nM) to nucleic acids without detectable sequence specificity. The difference in affinity between single- and double-stranded DNA is minor. Results suggest that multiple YbiB molecules bind to one longer DNA molecule in a cooperative manner. The YbiB protein is a homodimer that, therefore, has two electropositive DNA binding grooves. But due to negative cooperativity within the dimer, only one groove binds DNA in in vitro experiments. A monomerized variant remains able to bind DNA with similar affinity, but the negative cooperative effect is eliminated. The ybiB gene forms an operon with the DNA helicase gene dinG and is under LexA control, being induced by DNA-damaging agents. Thus, speculatively, the TrpD2 proteins may be part of the LexA-controlled SOS response in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Resposta SOS em Genética , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Antranilato Fosforribosiltransferase/química , Antranilato Fosforribosiltransferase/genética , Antranilato Fosforribosiltransferase/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Óperon , Pentosiltransferases/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Transdução de Sinais , Homologia Estrutural de Proteína
9.
J Biol Chem ; 290(30): 18744-56, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25979333

RESUMO

Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/química , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Receptores de Dopamina D2/química , Sequência de Aminoácidos/genética , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Cristalografia por Raios X , Dopamina/genética , Dopamina/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Humanos , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/química , Neuropeptídeos/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/genética
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 338-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664744

RESUMO

AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.


Assuntos
Proteínas/química , Software , Conformação Proteica , Fatores de Tempo
11.
Biochem Soc Trans ; 43(5): 850-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517893

RESUMO

Titin is a gigantic filamentous protein of the muscle sarcomere that plays roles in myofibril mechanics and homoeostasis. 3D-structures of multi-domain fragments of titin are now available that start revealing the molecular mechanisms governing its mechanical and scaffolding functions. This knowledge is now being translated into the fabrication of self-assembling biopolymers. Here we review the structural advances on titin, the novel concepts derived from these and the emerging translational avenues.


Assuntos
Conectina/química , Modelos Moleculares , Miofibrilas/química , Animais , Sítios de Ligação , Materiais Biocompatíveis/química , Conectina/genética , Conectina/metabolismo , Humanos , Miofibrilas/metabolismo , Miofibrilas/ultraestrutura , Nanoestruturas/química , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura
12.
Proc Natl Acad Sci U S A ; 109(34): 13608-13, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869697

RESUMO

Titin-like kinases are an important class of cytoskeletal kinases that intervene in the response of muscle to mechanical stimulation, being central to myofibril homeostasis and development. These kinases exist in autoinhibited states and, allegedly, become activated during muscle activity by the elastic unfolding of a C-terminal regulatory segment (CRD). However, this mechano-activation model remains controversial. Here we explore the structural, catalytic, and tensile properties of the multidomain kinase region of Caenorhabditis elegans twitchin (Fn(31)-Nlinker-kinase-CRD-Ig(26)) using X-ray crystallography, small angle X-ray scattering, molecular dynamics simulations, and catalytic assays. This work uncovers the existence of an inhibitory segment that flanks the kinase N-terminally (N-linker) and that acts synergistically with the canonical CRD tail to silence catalysis. The N-linker region has high mechanical lability and acts as the primary stretch-sensor in twitchin kinase, while the CRD is poorly responsive to pulling forces. This poor response suggests that the CRD is not a generic mechanosensor in this kinase family. Instead, the CRD is shown here to be permissive to catalysis and might protect the kinase active site against mechanical damage. Thus, we put forward a regulatory model where kinase inhibition results from the combined action of both N- and C-terminal tails, but only the N-terminal extension undergoes mechanical removal, thereby affording partial activation. Further, we compare invertebrate and vertebrate titin-like kinases and identify variations in the regulatory segments that suggest a mechanical speciation of these kinase classes.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Ligação a Calmodulina/química , Proteínas Musculares/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Raios X
13.
Biochemistry ; 53(38): 6078-83, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25184516

RESUMO

The rapid increase of the number of sequenced genomes asks for the functional annotation of the encoded enzymes. We used a combined computational-structural approach to determine the function of the TrpB2 subgroup of the tryptophan synthase ß chain/ß chain-like TrpB1-TrpB2 family (IPR023026). The results showed that TrpB2 enzymes are O-phospho-l-serine dependent tryptophan synthases, whereas TrpB1 enzymes catalyze the l-serine dependent synthesis of tryptophan. We found a single residue being responsible for the different substrate specificities of TrpB1 and TrpB2 and confirmed this finding by mutagenesis studies and crystallographic analysis of a TrpB2 enzyme with bound O-phospho-l-serine.


Assuntos
Triptofano Sintase/metabolismo , Domínio Catalítico , Clonagem Molecular , Biologia Computacional , Cristalização , Escherichia coli , Regulação Bacteriana da Expressão Gênica/fisiologia , Conformação Proteica , Especificidade por Substrato , Sulfolobus/enzimologia , Triptofano/biossíntese , Triptofano Sintase/química , Triptofano Sintase/classificação , Triptofano Sintase/genética
14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 11): 2194-201, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24189230

RESUMO

AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.


Assuntos
Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Família Multigênica , Ressonância Magnética Nuclear Biomolecular/métodos , Software , Tiorredoxinas/química , Substituição de Aminoácidos/genética , Proteínas da Membrana Bacteriana Externa/genética , Cristalografia por Raios X/métodos , Previsões , Modelos Moleculares , Dobramento de Proteína , Software/normas , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Tiorredoxinas/genética
15.
Biochem Soc Trans ; 41(4): 1066-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863180

RESUMO

The giant cytoskeletal kinases of the titin-like family are emerging as key mediators of stretch-sensing in muscle. It is thought that their elastic conformational deformation during muscle function regulates both their catalysis and the recruitment of regulatory proteins to signalosomes that assemble in their vicinity. In the present article, we discuss the speciation of mechanosensory mechanisms in titin-like kinases, their scaffolding properties and the kinase/pseudokinase domain variations that define a rich functional diversity across the family.


Assuntos
Conectina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinases/metabolismo , Humanos , Modelos Moleculares
16.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 8): 217-223, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565839

RESUMO

Members of the GCN5-related N-acetyltransferase (GNAT) family are found in all domains of life and are involved in processes ranging from protein synthesis and gene expression to detoxification and virulence. Due to the variety of their macromolecular targets, GNATs are a highly diverse family of proteins. Currently, 3D structures of only a small number of GNAT representatives are available and thus the family remains poorly characterized. Here, the crystal structure of the guanidine riboswitch-associated GNAT from Lactobacillus curiae (LcGNAT) that acetylates canavanine, a structural analogue of arginine with antimetabolite properties, is reported. LcGNAT shares the conserved fold of the members of the GNAT superfamily, but does not contain an N-terminal ß0 strand and instead contains a C-terminal ß7 strand. Its P-loop, which coordinates the pyrophosphate moiety of the acetyl-coenzyme A cosubstrate, is degenerated. These features are shared with its closest homologues in the polyamine acetyltransferase subclass. Site-directed mutagenesis revealed a central role of the conserved residue Tyr142 in catalysis, as well as the semi-conserved Tyr97 and Glu92, suggesting that despite its individual substrate specificity LcGNAT performs the classical reaction mechanism of this family.


Assuntos
Acetiltransferases , Acetiltransferases/química , Cristalografia por Raios X
17.
Open Biol ; 13(4): 220350, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37121260

RESUMO

Obscurins are large filamentous proteins with crucial roles in the assembly, stability and regulation of muscle. Characteristic of these proteins is a tandem of two C-terminal kinase domains, PK1 and PK2, that are separated by a long intrinsically disordered sequence. The significance of this conserved domain arrangement is unknown. Our study of PK1 from Drosophila obscurin shows that this is a pseudokinase with features typical of the CAM-kinase family, but which carries a minimalistic regulatory tail that no longer binds calmodulin or has mechanosensory properties typical of other sarcomeric kinases. PK1 binds ATP with high affinity, but in the absence of magnesium and lacks detectable phosphotransfer activity. It also has a highly diverged active site, strictly conserved across arthropods, that might have evolved to accommodate an unconventional binder. We find that PK1 interacts with PK2, suggesting a functional relation to the latter. These findings lead us to speculate that PK1/PK2 form a pseudokinase/kinase dual system, where PK1 might act as an allosteric regulator of PK2 and where mechanosensing properties, akin to those described for regulatory tails in titin-like kinases, might now reside on the unstructured interkinase segment. We propose that the PK1-interkinase-PK2 region constitutes an integrated functional unit in obscurin proteins.


Assuntos
Drosophila , Proteínas Musculares , Animais , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Musculares/metabolismo , Estrutura Terciária de Proteína , Sarcômeros/química , Sarcômeros/metabolismo
18.
Cell Rep ; 42(12): 113513, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039134

RESUMO

The nuclear receptor liver receptor homolog-1 (LRH-1) has been shown to promote apoptosis resistance in various tissues and disease contexts; however, its role in liver cell death remains unexplored. Hepatocyte-specific deletion of LRH-1 causes mild steatosis and inflammation but unexpectedly shields female mice from tumor necrosis factor (TNF)-induced hepatocyte apoptosis and associated hepatitis. LRH-1-deficient hepatocytes show markedly attenuated estrogen receptor alpha and elevated nuclear factor κB (NF-κB) activity, while LRH-1 overexpression inhibits NF-κB activity. This inhibition relies on direct physical interaction of LRH-1's ligand-binding domain and the Rel homology domain of NF-κB subunit RelA. Mechanistically, increased transcription of anti-apoptotic NF-κB target genes and the proteasomal degradation of pro-apoptotic BCL-2 interacting mediator of cell death prevent mitochondrial apoptosis and ultimately protect mice from TNF-induced liver damage. Collectively, our study emphasizes LRH-1 as a critical, sex-dependent regulator of cell death and inflammation in the healthy and diseased liver.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Feminino , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Fígado/metabolismo , Hepatócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Inflamação/patologia
19.
Biomedicines ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36830985

RESUMO

Myasthenia gravis (MG) is an autoimmune disease caused by antibodies targeting the neuromuscular junction (NJ) of skeletal muscles. The major MG autoantigen is nicotinic acetylcholine receptor. Other autoantigens at the NJ include MuSK, LRP4 and agrin. Autoantibodies to the intra-sarcomeric striated muscle-specific gigantic protein titin, although not directed to the NJ, are invaluable biomarkers for thymoma and MG disease severity. Thymus and thymoma are critical in MG mechanisms and management. Titin autoantibodies bind to a 30 KDa titin segment, the main immunogenic region (MIR), consisting of an Ig-FnIII-FnIII 3-domain tandem, termed I109-I111. In this work, we further resolved the localization of titin epitope(s) to facilitate the development of more specific anti-titin diagnostics. For this, we expressed protein samples corresponding to 8 MIR and non-MIR titin fragments and tested 77 anti-titin sera for antibody binding using ELISA, competition experiments and Western blots. All anti-MIR antibodies were bound exclusively to the central MIR domain, I110, and to its containing titin segments. Most antibodies were bound also to SDS-denatured I110 on Western blots, suggesting that their epitope(s) are non-conformational. No significant difference was observed between thymoma and non-thymoma patients or between early- and late-onset MG. In addition, atomic 3D-structures of the MIR and its subcomponents were elucidated using X-ray crystallography. These immunological and structural data will allow further studies into the atomic determinants underlying titin-based autoimmunity, improved diagnostics and how to eventually treat titin autoimmunity associated co-morbidities.

20.
J Neurosci ; 31(8): 2916-24, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21414913

RESUMO

AMPA- and kainate (KA)-selective ionotropic glutamate receptors (iGluRs) respond to agonist by opening (gating), then closing (desensitizing) in quick succession. Gating has been linked to agonist-induced changes within the ligand-binding domain (LBD), and desensitization to rearrangement of a dimer formed by neighboring LBDs. To explore the role of dimer conformation in both gating and desensitization, we compared the conformational effects of two kainate receptor mutants. The first, GluK2-D776K, blocks desensitization of macroscopic current responses ("macroscopic desensitization"). The second, GluK2-M770K, accelerates macroscopic desensitization and eliminates the effects of external ions on channel kinetics. Using structures determined by x-ray crystallography, we found that in both mutants the introduced lysines act as tethered cations, displacing sodium ions from their binding sites within the dimer interface. This results in new inter- and intra-protomer contacts in D776K and M770K respectively, explaining the effects of these mutations on dimer stability and desensitization kinetics. Further, chloride binding was unaffected by the M770K mutation, even though binding of sodium ions has been proposed to promote dimer stability by stabilizing anion binding. This suggests sodium binding may affect receptor function more directly than currently supposed. Notably, we also observed a ligand-specific shift in dimer conformation when comparing LBD dimers in complex with glutamate or the partial agonist KA, revealing a previously unidentified role for dimer orientation in iGluR gating.


Assuntos
Ativação do Canal Iônico/fisiologia , Multimerização Proteica , Receptores de Glutamato/química , Receptores de Glutamato/fisiologia , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica/fisiologia , Conformação Proteica , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores de Glutamato/metabolismo , Receptores de Ácido Caínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa