Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(12): 7115-7124, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876077

RESUMO

We have reported experimental studies on the self-assembly and degree of ordering of a binary mixture of soft colloids in monolayer deposits obtained by controlled evaporation. A sessile drop containing soft colloids is evaporated on a solid surface to achieve a loosely-packed two-dimensional deposit with a hexagonal arrangement. The soft microgel particles possess a hard core with a compliant corona, which plays a crucial role in retaining the crystallinity of the binary particle monolayer. The ordered arrangement of the binary mixture is observed even when the bulk diameter of one type of particle is 25% higher than the other, irrespective of their mixing ratio (1 : 3, 1 : 1, and 3 : 1). The microgel particles of both sizes are found to be homogeneously distributed throughout the deposit, completely suppressing the size-dependent particle segregation. Furthermore, in contrast to the self-assembly of bidisperse hard colloids, wherein the lattice distorts to accommodate particles of disparate sizes, in soft colloids, the particles deform at the interface to preserve the crystalline lattice. Moreover, unlike the gradual order-to-disorder transition observed in the deposits consisting of monodisperse microgel particles, the deposits of a binary mixture of microgels exhibit no noticeable trend. The areal disorder parameter, pair correlation function and the shape factor which quantifies the local ordering of particles in the deposit indicate the absence of a distinct order-to-disorder transition for the binary mixtures.

2.
Langmuir ; 34(47): 14294-14301, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30383383

RESUMO

We investigate the evaporation-driven pattern formation in drying drops containing mixtures of polystyrene and soft microgel particles. The well-known coffee-rings that form when drops containing polystyrene particles are dried can be completely undone in the presence of a small quantity of soft colloids. The addition of soft colloids facilitates the adsorption of polystyrene particles to the water-vapor interface leading to a steep increase in their concentration and also imparts viscoelasticity to the interface. Time-resolved video microscopy is used to conclusively show the formation of a gel-like particle-laden interface. The mean square displacement of the polystyrene particles adsorbed to the interface confirms their immobile nature at the interface. This viscoelastic interface almost prevents the bulk flow-assisted migration of polystyrene particles toward the drop edge, leading to the suppression of coffee-ring effect and the formation of uniform particulate deposits.


Assuntos
Resinas Acrílicas/química , Elasticidade , Poliestirenos/química , Vapor , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa