Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G500-G512, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494462

RESUMO

Mouse and human data implicate the NOD1 and NOD2 sensors of the intestinal microbiome and the associated signal transduction via the receptor interacting protein kinase 2 (RIPK2) as a potential key signaling node for the development of inflammatory bowel disease (IBD) and an attractive target for pharmacological intervention. The TRUC mouse model of IBD was strongly indicated for evaluating RIPK2 antagonism for its effect on intestinal inflammation based on previous knockout studies with NOD1, NOD2, and RIPK2. We identified and profiled the BI 706039 molecule as a potent and specific functional inhibitor of both human and mouse RIPK2 and with favorable pharmacokinetic properties. We dosed BI 706039 in the spontaneous TRUC mouse model from age 28 to 56 days. Oral, daily administration of BI 706039 caused dose-responsive and significant improvement in colonic histopathological inflammation, colon weight, and terminal levels of protein-normalized fecal lipocalin (all P values <0.001). These observations correlated with dose responsively increasing systemic levels of the BI 706039 compound, splenic molecular target engagement of RIPK2, and modulation of inflammatory genes in the colon. This demonstrates that a relatively low oral dose of a potent and selective RIPK2 inhibitor can modulate signaling in the intestinal immune system and significantly improve disease associated intestinal inflammation.NEW & NOTEWORTHY The RIPK2 kinase at the apex of microbiome immunosensing is an attractive target for pharmacological intervention. A low oral dose of a RIPK2 inhibitor leads to significantly improved intestinal inflammation in the murine TRUC model of colitis. A selective and potent inhibitor of the RIPK2 kinase may represent a new class of therapeutics that target microbiome-driven signaling for the treatment of IBD.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Animais , Disponibilidade Biológica , Células Cultivadas , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/enzimologia , Colo/patologia , Doença de Crohn/enzimologia , Doença de Crohn/patologia , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Fezes/química , Humanos , Mediadores da Inflamação/metabolismo , Lipocalinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteínas com Domínio T/genética
2.
Angew Chem Int Ed Engl ; 56(19): 5363-5367, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28397331

RESUMO

Skepinone-L was recently reported to be a p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, this class of compounds still act as fully ATP-competitive Type I binders which, furthermore, suffer from short residence times at the enzyme. We herein describe a further development with the first Type I1/2 binders for p38α MAP kinase. Type I1/2 inhibitors interfere with the R-spine, inducing a glycine flip and occupying both hydrophobic regions I and II. This design approach leads to prolonged target residence time, binding to both the active and inactive states of the kinase, excellent selectivity, excellent potency on the enzyme level, and low nanomolar activity in a human whole blood assay. This promising binding mode is proven by X-ray crystallography.


Assuntos
Dibenzocicloeptenos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Dibenzocicloeptenos/síntese química , Dibenzocicloeptenos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Fatores de Tempo
3.
Angew Chem Int Ed Engl ; 54(14): 4379-82, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25664555

RESUMO

Nuclear receptors are transcription factors that are important targets for current drug discovery efforts as they play a role in many pathological processes. Their activity can be regulated by small molecules like hormones and drugs that can have agonistic or antagonistic functions. These ligands bind to the receptor and account for diverse conformational changes that are crucial determinants for the receptor activity. Here, we set out to develop FLiN (fluorescent labels in nuclear receptors), a direct binding assay that detects conformational changes in the estrogen receptor. The assay is based on the introduction of a cysteine residue and subsequent specific labeling of the receptor with a thiol-reactive fluorophore. Changes in the receptor conformation upon ligand binding lead to differences in the microenvironment of the fluorophore and alter its emission spectrum. The FLiN assay distinguishes between different binding modes and is suitable for high-throughput screening.


Assuntos
Antagonistas do Receptor de Estrogênio/química , Estrogênios/química , Ligantes , Conformação Molecular
4.
Mol Metab ; 74: 101765, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390979

RESUMO

OBJECTIVE: Obesity is a major global health problem which can be targeted with new mechanistic diverse pharmacological interventions. Here we evaluate a new long-acting secretin receptor agonist as a potential treatment for obesity. METHODS: BI-3434 was designed as a secretin analog with stabilized peptide backbone and attached fatty acid-based half-life extension group. The peptide was evaluated in vitro for its ability to stimulate cAMP accumulation in a cell line stably expressing recombinant secretin receptor. On the functional level, stimulation of lipolysis in primary adipocytes after treatment with BI-3434 was determined. The ability of BI-3434 to activate secretin receptor in vivo was assessed in a cAMP reporter CRE-Luc mouse model. Furthermore, a diet-induced obesity mouse model was used to test the effects of BI-3434 on body weight and food intake following repeated daily subcutaneous administration alone and in combination with a GLP-1R agonist. RESULTS: BI-3434 potently activated human secretin receptor. However, lipolysis was only weakly induced in primary murine adipocytes. BI-3434 had an extended half-life compared to endogenous secretin and activated target tissues like pancreas, adipose tissue, and stomach in vivo. BI-3434 did not lower food intake in lean or diet-induced obese mice, but it increased energy expenditure after daily administration. This led to a loss of fat mass, which did not translate in a significant effect on body weight. However, treatment in combination with a GLP-1R agonist led to a synergistic effect on body weight loss. CONCLUSIONS: BI-3434 is a highly potent and selective agonist of secretin receptor with an extended pharmacokinetic (PK) profile. Increased energy expenditure after daily treatment with BI-3434 suggests that secretin receptor is involved in metabolic regulation and energy homeostasis. Targeting secretin receptor alone may not be an efficient anti-obesity treatment, but could be combined with anorectic principles like GLP-1R agonists.


Assuntos
Hormônios Gastrointestinais , Secretina , Camundongos , Humanos , Animais , Secretina/farmacologia , Secretina/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Peso Corporal , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos
5.
Neuropharmacology ; 213: 109078, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561791

RESUMO

Apathy, deficiency of motivation including willingness to exert effort for reward, is a common symptom in many psychiatric and neurological disorders, including depression and schizophrenia. Despite improved understanding of the neurocircuitry and neurochemistry underlying normal and deficient motivation, there is still no approved pharmacological treatment for such a deficiency. GPR139 is an orphan G protein-coupled receptor expressed in brain regions which contribute to the neural circuitry that controls motivation including effortful responding for reward, typically sweet gustatory reward. The GPR139 agonist TAK-041 is currently under development for treatment of negative symptoms in schizophrenia which include apathy. To date, however, there are no published preclinical data regarding its potential effect on reward motivation or deficiencies thereof. Here we report in vitro evidence confirming that TAK-041 increases intracellular Ca2+ mobilization and has high selectivity for GPR139. In vivo, TAK-041 was brain penetrant and showed a favorable pharmacokinetic profile. It was without effect on extracellular dopamine concentration in the nucleus accumbens. In addition, TAK-041 did not alter the effort exerted to obtain sweet gustatory reward in rats that were moderately food deprived. By contrast, TAK-041 increased the effort exerted to obtain sweet gustatory reward in mice that were only minimally food deprived; furthermore, this effect of TAK-041 occurred both in control mice and in mice in which deficient effortful responding was induced by chronic social stress. Overall, this study provides preclinical evidence in support of GPR139 agonism as a molecular target mechanism for treatment of apathy.


Assuntos
Motivação , Roedores , Animais , Dopamina/metabolismo , Gastos em Saúde , Camundongos , Proteínas do Tecido Nervoso/farmacologia , Ratos , Receptores Acoplados a Proteínas G , Recompensa , Roedores/metabolismo
6.
J Med Chem ; 60(19): 8027-8054, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28834431

RESUMO

We recently reported 1a (skepinone-L) as a type I p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, as a type I inhibitor, it is entirely ATP-competitive and shows just a moderate residence time. Thus, the scope was to develop a new class of advanced compounds maintaining the structural binding features of skepinone-L scaffold like inducing a glycine flip at the hinge region and occupying both hydrophobic regions I and II. Extending this scaffold with suitable residues resulted in an interference with the kinase's R-Spine. By synthesizing 69 compounds, we could significantly prolong the target residence time with one example to 3663 s, along with an excellent selectivity score of 0.006 and an outstanding potency of 1.0 nM. This new binding mode was validated by cocrystallization, showing all binding interactions typifying type I1/2 binding. Moreover, microsomal studies showed convenient metabolic stability of the most potent, herein reported representatives.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Desenho de Fármacos , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
J Med Chem ; 58(17): 6844-63, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26275028

RESUMO

Receptor tyrosine kinases represent one of the prime targets in cancer therapy, as the dysregulation of these elementary transducers of extracellular signals, like the epidermal growth factor receptor (EGFR), contributes to the onset of cancer, such as non-small cell lung cancer (NSCLC). Strong efforts were directed to the development of irreversible inhibitors and led to compound CO-1686, which takes advantage of increased residence time at EGFR by alkylating Cys797 and thereby preventing toxic effects. Here, we present a structure-based approach, rationalized by subsequent computational analysis of conformational ligand ensembles in solution, to design novel and irreversible EGFR inhibitors based on a screening hit that was identified in a phenotype screen of 80 NSCLC cell lines against approximately 1500 compounds. Using protein X-ray crystallography, we deciphered the binding mode in engineered cSrc (T338M/S345C), a validated model system for EGFR-T790M, which constituted the basis for further rational design approaches. Chemical synthesis led to further compound collections that revealed increased biochemical potency and, in part, selectivity toward mutated (L858R and L858R/T790M) vs nonmutated EGFR. Further cell-based and kinetic studies were performed to substantiate our initial findings. Utilizing proteolytic digestion and nano-LC-MS/MS analysis, we confirmed the alkylation of Cys797.


Assuntos
Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Receptores ErbB/genética , Humanos , Cinética , Neoplasias Pulmonares , Modelos Moleculares , Conformação Molecular , Mutação , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Solubilidade , Relação Estrutura-Atividade , Quinases da Família src/química , Quinases da Família src/genética
8.
J Med Chem ; 56(1): 241-53, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23270382

RESUMO

p38α mitogen-activated protein (MAP) kinase is a main target in drug research concerning inflammatory diseases. Nevertheless, no inhibitor of p38α MAP kinase has been introduced to the market. This might be attributed to the fact that there is no inhibitor which combines outstanding activity in biological systems and selectivity. Herein an approach to the development of such inhibitors on the basis of the highly selective molecular probe Skepinone-L is described. Introduction of a "deep pocket" moiety addressing the DFG motif led to an increased activity of the compounds. Hydrophilic moieties, addressing the solvent-exposed area adjacent to hydrophilic region II, conserved a high activity of the compounds in a whole blood assay. Combined with their outstanding selectivity and low ATP competitiveness, these inhibitors are very interesting candidates for use in biological systems and in therapy.


Assuntos
Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios não Esteroides/síntese química , Dibenzocicloeptenos/síntese química , Modelos Moleculares , Fator de Necrose Tumoral alfa/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Trifosfato de Adenosina/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Sítios de Ligação , Dibenzocicloeptenos/química , Dibenzocicloeptenos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/farmacologia , Ligação Proteica , Solubilidade , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/química
9.
J Med Chem ; 55(17): 7862-74, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22897496

RESUMO

The p38 MAP kinase is a key player in signaling pathways regulating the biosynthesis of inflammatory cytokines. Small molecule p38 inhibitors suppress the production of these cytokines. Therefore p38 is a promising drug target for novel anti-inflammatory drugs. In this study, we report novel dibenzepinones, dibenzoxepines, and benzosuberones as p38α MAP kinase inhibitors. Previously reported dibenzepinones and dibenzoxepines were chemically modified by introduction of functional groups or removal of a phenyl ring. This should result in targeting of the hydrophobic region I, the "deep pocket", and the hinge glycine flip of the kinase. Potent inhibitors with IC(50) values in the single digit nanomolar range (up to 3 nM) were identified. Instead of targeting the "deep pocket" in the DFG-out conformation, interactions with the DFG-motif in the in-conformation could be observed by protein X-ray crystallography.


Assuntos
Glicina/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Cristalografia por Raios X , Glicina/química , Espectroscopia de Ressonância Magnética , Proteína Quinase 14 Ativada por Mitógeno/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Espectrometria de Massas por Ionização por Electrospray
10.
ACS Chem Biol ; 7(7): 1257-67, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22545924

RESUMO

Protein kinases are key enzymes in the complex regulation of cellular processes in almost all living organisms. For this reason, protein kinases represent attractive targets to stop the growth of eukaryotic pathogens such as protozoa and fungi. However, using kinase inhibitors to fight against these organisms bears several challenges since most of them are unselective and will also affect crucial host kinases. Here we present the X-ray structure of glycogen synthase kinase 3 from the fungal plant pathogen Ustilago maydis (UmGSK3) and its inhibition by type-II kinase inhibitors. Despite the high sequence homology between the human and the fungal variant of this vital kinase, we found substantial differences in the conformational plasticity of their active sites. Compounds that induced such conformational changes could be used to selectively inhibit the fungal kinase. This study serves as an example of how species-specific selectivity of inhibitors can be achieved by identifying and addressing the inactive state of a protein kinase. In addition to this, our study gives interesting insights into the molecular plasticity of UmGSK3 by revealing a previously unknown inactive conformation of this important kinase family.


Assuntos
Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Ustilago/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Dados de Sequência Molecular , Ustilago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa