Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Chem Biodivers ; 20(11): e202301143, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857580

RESUMO

The combination of antibacterial and antiviral agents is becoming a very important aspect of dealing with resistant bacterial and viral infections. The N-phenylthiazole scaffold was found to possess significant anti-MRSA, antifungal, and anti-COVID-19 activities as previously published; hence, a slight refinement was proposed to attach various alkyne lipophilic tails to this promising scaffold, to investigate their effects on the antimicrobial activity of the newly synthesized compounds and to provide a valuable structure-activity relationship. Phenylthiazole 4 m exhibited the most potent anti-MRSA activity with 8 µg/mL MIC value. Compounds 4 k and 4 m demonstrated potent activity against Clostridium difficile with MIC values of 2 µg/mL and moderate activity against Candida albicans with MIC value of 4 µg/mL. When analyzed for their anti-COVID-19 inhibitory effect, compound 4 b emerged with IC50 =1269 nM and the highest selectivity of 138.86 and this was supported by its binding score of -5.21 kcal mol-1 when docked against SARS-CoV-2 M pro . Two H-bonds were formed, one with His164 and the other with Met49 stabilizing phenylthiazole derivative 4 b, inside the binding pocket. Additionally, it created two arene-H bonds with Asn142 and Glu166, through the phenylthiazole scaffold and one arene-H bond with Leu141 via the phenyl ring of the lipophilic tail.


Assuntos
Antibacterianos , Antifúngicos , Antifúngicos/química , Antibacterianos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
2.
Bioorg Med Chem Lett ; 29(9): 1127-1132, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826292

RESUMO

Chloramphenicol nitroreductase (CNR), a drug-modifying enzyme from Haemophilus influenzae, has been shown to be responsible for the conversion of the nitro group into an amine in the antibiotic chloramphenicol (CAM). Since CAM structurally bears a 4-nitrobenzene moiety, we explored the substrate promiscuity of CNR by investigating its nitroreduction of 4-nitrobenzyl derivatives. We tested twenty compounds containing a nitrobenzene core, two nitropyridines, one compound with a vinylogous nitro group, and two aliphatic nitro compounds. In addition, we also synthesized twenty-eight 4-nitrobenzyl derivatives with ether, ester, and thioether substituents and assessed the relative activity of CNR in their presence. We found several of these compounds to be modified by CNR, with the enzyme activity ranging from 1 to 150% when compared to CAM. This data provides insights into two areas: (i) chemoenzymatic reduction of select compounds to avoid harsh chemicals and heavy metals routinely used in reductions of nitro groups and (ii) functional groups that would aid CAM in overcoming the activity of this enzyme.


Assuntos
Cloranfenicol/metabolismo , Haemophilus influenzae/enzimologia , Nitrobenzenos/metabolismo , Nitrorredutases/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cloranfenicol/química , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Nitrobenzenos/química , Nitrobenzenos/farmacologia , Relação Estrutura-Atividade
3.
Molecules ; 20(8): 15287-303, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26307959

RESUMO

The usefulness of non-steroidal anti-inflammatory drugs (NSAIDs) is hampered by their gastrointestinal side effects. Non-selective cyclooxygenases inhibitors interfere with both COX-1 and COX-2 isozymes. Since COX-1 mediates cytoprotection of gastric mucosa, its inhibition leads to the undesirable side effects. On the other hand, COX-2 is undetectable in normal tissues and selectively induced by inflammatory stimuli. Therefore, it is strongly believed that the therapeutic benefits derive from inhibition of COX-2 only. The presence of a strong connection between reported COX-2 inhibitors and cardiac toxicity encourages medicinal chemists to explore new scaffolds. In the present study, we introduced imidazopyrazolopyridines as new potent and selective COX-2 inhibitors that lack the standard pharmacophoric binding features to hERG. Starting from our lead compound 5a, structure-based drug-design was conducted and more potent analogues were obtained with high COX-2 selectivity and almost full edema protection, in carrageenan-induced edema assay, in case of compound 5e. Increased bulkiness around imidazopyrazolopyridines by adding a substituted phenyl ring(s) afforded less active compounds.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Imidazóis/química , Pirazóis/química , Pirazóis/síntese química , Piridinas/química , Piridinas/síntese química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Edema/tratamento farmacológico , Humanos , Ratos , Proteínas Recombinantes
4.
RSC Med Chem ; 15(6): 1991-2001, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911156

RESUMO

Clostridium difficile (C. difficile) is one of the most threatening bacteria globally, causing high mortality and morbidity in humans and animals, and is considered a public health threat that requires urgent and aggressive action. Interruption of the human gut microbiome and the development of antibiotic resistance urgently require development and synthesis of effective alternative antibiotics with minimal effects on the normal gut microbial flora. In this study, cyclization of the aminoguanidine head to the thiazole nucleus while maintaining its other pharmacophoric features leads to selective targeting of Clostridioides difficile as shown in the graphical abstract. The most promising compound, 5, was significantly more efficient than vancomycin and metronidazole against six strains of C. diff with MIC values as low as 0.030 µg mL-1. Additionally, compound 5 was superior to vancomycin and metronidazole, showing no inhibition toward nine tested strains of the normal human gut microbiota (>64 µg mL-1). The high safety profile of compound 5 was also observed with two cell lines HRT-18 and Vero cells.

5.
RSC Adv ; 14(2): 1513-1526, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174234

RESUMO

The structure-activity relationship of a new tert-butylphenylthiazole series, with a pyrimidine linker, was investigated. We wished to expand knowledge of this novel class of antibiotics by generating 21 new derivatives bearing ≥2 heteroatoms in their side chains. Their activity was examined against isolates of methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. Two compounds with 1,2-diaminocyclohexane as a nitrogenous side chain showed promising activity against the highly infectious MRSA USA300 strain, with a minimum inhibitory concentration (MIC) of 4 µg mL-1. One of these two compounds demonstrated potent activity against C. difficile, with a MIC of 4 µg mL-1. Moderate activities against a C. difficile strain with a MIC of 8 µg mL-1 were noted. Some new compounds possessed antifungal activity against a wild fluconazole-resistant C. albicans strain, with MIC values of 4-16 µg mL-1. ADME and metabolism-simulation studies were performed for the most promising compound and compared with lead compounds. Our results revealed that one compound possessed greater penetration of bacterial membranes and metabolic resistance, which aided a longer duration of action against MRSA.

6.
J Antimicrob Chemother ; 68(4): 800-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23233486

RESUMO

OBJECTIVES: The enhanced intracellular survival (Eis) protein from Mycobacterium tuberculosis (Eis_Mtb), a regio-versatile N-acetyltransferase active towards many aminoglycosides (AGs), confers resistance to kanamycin A in some cases of extensively drug-resistant tuberculosis (XDR-TB). We assessed the activity of Eis_Mtb and of its homologue from Mycobacterium smegmatis (Eis_Msm) against a panel of anti-tuberculosis (TB) drugs and lysine-containing compounds. METHODS AND RESULTS: Both enzymes acetylated capreomycin and some lysine-containing compounds, but not other non-AG non-lysine-containing drugs tested. Modelling studies predicted the site of modification on capreomycin to be one of the two primary amines in its ß-lysine side chain. Using Eis_Mtb, we established via nuclear magnetic resonance (NMR) spectroscopy that acetylation of capreomycin occurs on the ε-amine of the ß-lysine side chain. Using Msm, we also demonstrated for the first time to our knowledge that acetylation of capreomycin results in deactivation of the drug. CONCLUSIONS: Eis is a unique acetyltransferase capable of inactivating the anti-TB drug capreomycin, AGs and other lysine-containing compounds.


Assuntos
Antígenos de Bactérias/metabolismo , Antituberculosos/metabolismo , Proteínas de Bactérias/metabolismo , Capreomicina/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Acetilação , Acetiltransferases , Espectroscopia de Ressonância Magnética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo
7.
Beilstein J Org Chem ; 9: 1012-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766818

RESUMO

The number of people suffering from Alzheimer's disease (AD) is expected to increase dramatically in the coming years, placing a huge burden on society. Current treatments for AD leave much to be desired, and numerous research efforts around the globe are focused on developing improved therapeutics. In addition, current diagnostic tools for AD rely largely on subjective cognitive assessment rather than on identification of pathophysiological changes associated with disease onset and progression. These facts have led to numerous efforts to develop chemical probes to detect pathophysiological hallmarks of AD, such as amyloid-ß plaques, for diagnosis and monitoring of therapeutic efficacy. This review provides a survey of chemical probes developed to date for AD with emphasis on synthetic methodologies and structure-activity relationships with regards to affinity for target and brain kinetics. Several probes discussed herein show particularly promising results and will be of immense value moving forward in the fight against AD.

8.
RSC Med Chem ; 14(2): 367-377, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36846365

RESUMO

With the continuous and alarming threat of exhausting the current antimicrobial arsenals, efforts are urgently needed to develop new effective ones. In this study, the antibacterial efficacy of a set of structurally related acetylenic-diphenylurea derivatives carrying the aminoguanidine moiety was tested against a panel of multidrug-resistant Gram-positive clinical isolates. Compound 18 was identified with a superior bacteriological profile than the lead compound I. Compound 18 demonstrated an excellent antibacterial profile in vitro: low MIC values, extended post-antibiotic effect, refractory ability to resistance development upon extended repeated exposure, and high tolerability towards mammalian cells. Finally, when assessed in a MRSA skin infection animal model, compound 18 showed considerable healing and less inflammation, decrease in the bacterial loads in skin lesions, and it surpassed fusidic acid in controlling the systemic dissemination of S. aureus. Collectively, compound 18 represents a promising lead anti-MRSA agent that merits further investigation for the development of new anti-staphylococcal therapeutics.

9.
RSC Med Chem ; 14(10): 2089-2099, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859711

RESUMO

Cryptococcal infections remain a major cause of mortality worldwide due to the ability of Cryptococci to pass through the blood-brain barrier (BBB) causing lethal meningitis. The limited number of available therapeutics, which exhibit limited availability, severe toxicity and low tolerability, necessitates the development of new therapeutics. Investigating the antifungal activity of a novel series of naphthylthiazoles provided trans-diaminocyclohexyl derivative 18 with many advantageous attributes as a potential therapeutic for cryptococcal meningitis. Briefly, the antimycotic activity of 18 against cryptococcal strains was highly comparable to that of amphotericin-B and fluconazole with MIC values as low as 1 µg mL-1. Moreover, compound 18 possessed additional advantages over fluconazole; it significantly reduced the intracellular burden of Cryptococci and markedly inhibited cryptococcal biofilm formation. Initial PK assessment of 18 indicated its ability to reach the CNS after oral administration with high permeability, and it maintained therapeutic plasma concentrations for 18 h. Its antifungal activity extended to other clinically relevant strains, such as fluconazole-resistant C. auris.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38109475

RESUMO

Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the mixed-matrix fibers (Cole@PCL), enabling optimization of the ion-exchange properties of the resulted membranes. This approach enabled adaptation of anion-exchange resins to a permeable, flexible membrane form, which is a significant advancement toward futuristic water treatment applications, demonstrated herein for the removal of trace contaminants, including nitrates and phosphates, as well as anionic dyes. The Cole@PCL membranes demonstrated the dependence of contaminant uptake on the weight percentage of colesevelam in the mixed-matrix membrane. An optimal 10 wt % of colesevelam was identified, demonstrating a staggering ion removal capacity of 155.8 mg/g for nitrate, 177.6 mg/g for phosphate, and 70 mg/g for Methyl Orange.

11.
RSC Adv ; 13(29): 19695-19709, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425632

RESUMO

Antimicrobial resistance has become a concern as a worldwide threat. A novel scaffold of phenylthiazoles was recently evaluated against multidrug-resistant Staphylococci to control the emergence and spread of antimicrobial resistance, showing good results. Several structural modifications are needed based on the structure-activity relationships (SARs) of this new antibiotic class. Previous studies revealed the existence of two key structural features essential for the antibacterial activity, the guanidine head and lipophilic tail. In this study, a new series of twenty-three phenylthiazole derivatives were synthesized utilizing the Suzuki coupling reaction to explore the lipophilic part. The in vitro antibacterial activity was evaluated against a range of clinical isolates. The three most promising compounds, 7d, 15d and 17d, with potent MIC values against MRSA USA300 were selected for further antimicrobial evaluation. The tested compounds exhibited potent results against the tested MSSA, MRSA, and VRSA strains (concentration: 0.5 to 4 µg mL-1). Compound 15d inhibited MRSA USA400 at a concentration of 0.5 µg mL-1 (one-fold more potent than vancomycin) and showed low MIC values against ten clinical isolates, including linezolid-resistant strain MRSA NRS119 and three vancomycin-resistant isolates VRSA 9/10/12. Moreover, compound 15d retained its potent antibacterial activity using the in vivo model by the burden reduction of MRSA USA300 in skin-infected mice. The tested compounds also showed good toxicity profiles and were found to be highly tolerable to Caco-2 cells at concentrations of up to 16 µg mL-1, with 100% of the cells remaining viable.

12.
Breast Cancer Res Treat ; 133(1): 99-109, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21814747

RESUMO

To improve the treatment of breast cancer, there has been a need for alternative aromatase inhibitors (AIs) that bring about adequate aromatase inhibition, while limiting side effects. Since two tamoxifen metabolites have been documented as AIs, we tested a wide range of tamoxifen metabolites on aromatase in order to better understand structural interactions with aromatase and constructed structure-function relationships as a first step toward the development of novel inhibitors. The ability of ten tamoxifen metabolites to inhibit recombinant aromatase (CYP19) was tested using microsomal incubations. The selectivity of the most potent aromatase inhibitor identified, norendoxifen, was characterized by studying its ability to inhibit CYP450 enzymes important in clinical drug-drug interactions, including CYP2B6, 2C9, 2C19, 2D6, and 3A. Computerized molecular docking with the X-ray crystallographic structure of aromatase was used to describe the detailed biochemical interactions involved. The inhibitory potency order of the tested compounds was as follows: norendoxifen ≫ 4,4'-dihydroxy-tamoxifen > endoxifen > N-desmethyl-tamoxifen, N-desmethyl-4'-hydroxy-tamoxifen, tamoxifen-N-oxide, 4'-hydroxy-tamoxifen, N-desmethyl-droloxifene > 4-hydroxy-tamoxifen, tamoxifen. Norendoxifen inhibited recombinant aromatase via a competitive mechanism with a K ( i ) of 35 nM. Norendoxifen inhibited placental aromatase with an IC(50) of 90 nM, while it inhibited human liver CYP2C9 and CYP3A with IC(50) values of 990 and 908 nM, respectively. Inhibition of human liver CYP2C19 by norendoxifen appeared even weaker. No substantial inhibition of CYP2B6 and CYP2D6 by norendoxifen was observed. These data suggest that multiple metabolites of tamoxifen may contribute to its action in the treatment of breast cancer via aromatase inhibition. Most of all, norendoxifen may be able to serve as a potent and selective lead compound in the development of improved therapeutic agents. The range of structures tested in this study and their pharmacologic potencies provide a reasonable pharmacophore upon which to build novel AIs.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Aromatase/farmacologia , Aromatase/química , Tamoxifeno/análogos & derivados , Antineoplásicos/química , Inibidores da Aromatase/química , Sítios de Ligação , Neoplasias da Mama , Domínio Catalítico , Simulação por Computador , Descoberta de Drogas , Feminino , Humanos , Isoenzimas/química , Cinética , Letrozol , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Modelos Moleculares , Nitrilas/química , Nitrilas/farmacologia , Tamoxifeno/química , Tamoxifeno/farmacologia , Testosterona/metabolismo , Termodinâmica , Triazóis/química , Triazóis/farmacologia
13.
Bioorg Med Chem ; 20(10): 3150-61, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22516671

RESUMO

Hepatitis C virus (HCV), like many other flaviviruses, is widely distributed worldwide with estimated chronically infected victims between 170 and 200 million. HCV inherent error-prone RNA-dependent RNA polymerase (RdRp) is an attractive target for medicinal chemists because of the conservative nature of NS5B nucleotide-binding site. In addition, the availability of several crystal structures for HCV RdRp paved the road for conducting rational-based drug design. At the same time, RdRp is responsible for high mutation rate and rapid development of resistance to the clinically-used therapeutics. To improve the viral response, combination therapy is regularly used. The success of co-therapy disciplines depends on targeting two different active sites. This review provides an overview about different scaffolds that target HCV RdPp with insights about their binding modes and possible induced mutant strains.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Mutação , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores
14.
Bioorg Med Chem ; 20(7): 2427-34, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22386564

RESUMO

Aromatase is an established target not only for breast cancer chemotherapy, but also for breast cancer chemoprevention. The moderate and non-selective aromatase inhibitory activity of resveratrol (1) was improved about 100-fold by replacement of the ethylenic bridge with a thiadiazole and the phenyl rings with pyridines (e.g., compound 3). The aromatase inhibitory activity was enhanced over 6000-fold by using a 1,3-thiazole as the central ring and modifying the substituents on the 'A' ring to target the Met374 residue of aromatase. On the other hand, targeting the hydroxyl group of Thr310 by a hydrogen-bond acceptor on the 'B' ring did not improve the aromatase inhibitory activity.


Assuntos
Inibidores da Aromatase/química , Aromatase/química , Estilbenos/química , Tiazóis/química , Aromatase/efeitos dos fármacos , Aromatase/metabolismo , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/farmacologia , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Ensaios Enzimáticos , Humanos , Resveratrol , Estilbenos/síntese química , Estilbenos/farmacologia , Relação Estrutura-Atividade
15.
Bioorg Med Chem ; 20(24): 7030-9, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23142320

RESUMO

NAD(P)H:quinone reductase 1 (QR1) belongs to a class of enzymes called cytoprotective enzymes. It exhibits its cancer protective activity mainly by inhibiting the formation of intracellular semiquinone radicals, and by generating α-tocopherolhydroquinone, which acts as a free radical scavenger. It is therefore believed that QR1 inducers can act as cancer chemopreventive agents. Resveratrol (1) is a naturally occurring stilbene derivative that requires a concentration of 21 µM to double QR1 activity (CD = 21 µM). The stilbene double bond of resveratrol was replaced with a thiadiazole ring and the phenols were eliminated to provide a more potent and selective derivative 2 (CD = 2.1 µM). Optimizing the substitution pattern of the two phenyl rings and the central heterocyclic linker led to a highly potent and selective QR1 inducer 9o with a CD value of 0.087 µM.


Assuntos
NAD(P)H Desidrogenase (Quinona)/biossíntese , Estilbenos/química , Estilbenos/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Animais , Indução Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Resveratrol , Relação Estrutura-Atividade , Tiazóis/síntese química
16.
Bioorg Med Chem ; 20(1): 510-20, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22115839

RESUMO

Chemoprevention is an approach to decrease cancer morbidity and mortality through inhibition of carcinogenesis and prevention of disease progression. Although the trans stilbene derivative resveratrol has chemopreventive properties, its action is compromised by weak non-specific effects on many biological targets. Replacement of the stilbene ethylenic bridge of resveratrol with a 1,2,4-thiadiazole heterocycle and modification of the substituents on the two aromatic rings afforded potential chemopreventive agents with enhanced potencies and selectivities when evaluated as inhibitors of aromatase and NF-κB and inducers of quinone reductase 1 (QR1).


Assuntos
Antineoplásicos/química , Neoplasias/prevenção & controle , Estilbenos/química , Tiadiazóis/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aromatase/química , Aromatase/metabolismo , Sítios de Ligação , Domínio Catalítico , Quimioprevenção , Simulação por Computador , Ativação Enzimática/efeitos dos fármacos , Humanos , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Resveratrol , Relação Estrutura-Atividade , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico
17.
Curr Pharm Des ; 28(43): 3469-3477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36424796

RESUMO

Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound. It is a prominent pharmacophore in designing and synthesizing new compounds with antibacterial activity against multidrug-resistant bacteria such as MRSA, which is categorized as a serious threat pathogen, that exhibited concomitant resistance to most of the first-line antibiotics. MRSA has been associated with soft tissue and skin infections resulting in high death rates, rapid dissemination, and loss of millions of dollars of additional health care costs. In this brief review, we have focused on the advances of phenylthiazole derivatives as potential anti-MRSA from 2014 to 2021. The review encompasses the effect on biological activity due to combining this molecule with various synthetic pharmacophores. The physicochemical aspects were correlated with the pharmacokinetic properties of the reviewed compounds to reach a structure-activity relationship profile. Lead optimization of phenyl thiazole derivatives has additionally been outlined where the lipophilicity of the compounds was balanced with the metabolic stability and oral solubility to aid the researchers in medicinal chemistry, design, and synthesizing effective anti- MRSA phenylthiazoles in the future.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/química , Relação Estrutura-Atividade , Farmacorresistência Bacteriana Múltipla , Tiazóis/farmacologia , Testes de Sensibilidade Microbiana
18.
Eur J Med Chem ; 234: 114204, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35279608

RESUMO

A set of structurally related diphenylurea derivatives bearing aminoguanidine moiety were synthesized, and their antibacterial activity was assessed against a panel of multi-drug resistant Gram-positive clinical isolates. Two compounds 6 and 24 were identified with better bacteriological profile than the lead compound I. The multi-step resistance development studies indicated that MRSA are less likely to develop resistance toward diphenylurea compounds. Moreover, these compounds demonstrated a prolonged post-antibiotic effect than that of vancomycin. Furthermore, compounds 6 and 24 were able to re-sensitize VRSA to vancomycin, resulting in 8- to more than 32-fold improvement in vancomycin MIC values against clinical VRSA isolates. Finally, when assessed in an in vivo skin infection mouse model, the efficacy of compound 24 was very comparable to that of the commercially available fusidic acid ointment. Additionally, the diphenylurea 24 did not have a pronounced effect on the animal weights along the experiment indicating its safety and tolerability to mice. Taken together, these results indicate that the diphenylurea scaffold merits further investigation as a promising anti-staphylococcal treatment option.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meticilina/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Relação Estrutura-Atividade , Vancomicina/farmacologia , Staphylococcus aureus Resistente à Vancomicina
19.
Bioorg Med Chem ; 19(12): 3845-54, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21612931

RESUMO

Flaviviruses are one of the most clinically important pathogens and their infection rates are increasing steadily. The phenylthiazole ring system has provided a template for the design and synthesis of antiviral agents that inhibit the flaviviruses by targeting their E-protein. Unfortunately, there is a correlation between phenylthiazole antiflaviviral activity and the presence of the reactive and therefore potentially toxic mono- or dibromomethyl moieties at thiazole-C4. Adding a linear hydrophobic tail para to the phenyl ring led to a new class of phenylthiazole antiflaviviral compounds that lack the toxic dibromomethyl moiety. This led to development of a drug-like phenylthiazole 12 that had high antiflaviviral selectivity (TI=147).


Assuntos
Antivirais/química , Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antivirais/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Ratos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
20.
Tetrahedron Lett ; 52(38): 4941-4943, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21927513

RESUMO

Aryl thioamides undergo a very rapid condensation in the presence of methyl bromocyanoacetate to provide quantitative yields of 3,5-diaryl-1,2,4-thiadiazoles with easy work-up and a high degree of product purity. The method can be scaled up with no loss in efficiency.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa