Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(21): 11551-11558, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404424

RESUMO

As the primary decomposers of organic material in terrestrial ecosystems, fungi are critical agents of the global carbon cycle. Yet our ability to link fungal community composition to ecosystem functioning is constrained by a limited understanding of the factors accounting for different wood decomposition rates among fungi. Here we examine which traits best explain fungal decomposition ability by combining detailed trait-based assays on 34 saprotrophic fungi from across North America in the laboratory with a 5-y field study comprising 1,582 fungi isolated from 74 decomposing logs. Fungal growth rate (hyphal extension rate) was the strongest single predictor of fungal-mediated wood decomposition rate under laboratory conditions, and accounted for up to 27% of the in situ variation in decomposition in the field. At the individual level, decomposition rate was negatively correlated with moisture niche width (an indicator of drought stress tolerance) and with the production of nutrient-mineralizing extracellular enzymes. Together, these results suggest that decomposition rates strongly align with a dominance-tolerance life-history trade-off that was previously identified in these isolates, forming a spectrum from slow-growing, stress-tolerant fungi that are poor decomposers to fast-growing, highly competitive fungi with fast decomposition rates. Our study illustrates how an understanding of fungal trait variation could improve our predictive ability of the early and midstages of wood decay, to which our findings are most applicable. By mapping our results onto the biogeographic distribution of the dominance-tolerance trade-off across North America, we approximate broad-scale patterns in intrinsic fungal-mediated wood decomposition rates.


Assuntos
Fungos/fisiologia , Madeira/microbiologia , Ciclo do Carbono/fisiologia , Ecossistema , Fungos/classificação , Fungos/enzimologia , Hifas/fisiologia , Micobioma/fisiologia , América do Norte
2.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638573

RESUMO

13-lipoxygenases (13-LOX) catalyze the dioxygenation of various polyunsaturated fatty acids (PUFAs), of which α-linolenic acid (LeA) is converted to 13-S-hydroperoxyoctadeca-9, 11, 15-trienoic acid (13-HPOT), the precursor for the prostaglandin-like plant hormones cis-(+)-12-oxophytodienoic acid (12-OPDA) and methyl jasmonate (MJ). This study aimed for characterizing the four annotated A. thaliana 13-LOX enzymes (LOX2, LOX3, LOX4, and LOX6) focusing on synthesis of 12-OPDA and 4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl] cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid (OCPD). In addition, we performed interaction studies of 13-LOXs with ions and molecules to advance our understanding of 13-LOX. Cell imaging indicated plastid targeting of fluorescent proteins fused to 13-LOXs-N-terminal extensions, supporting the prediction of 13-LOX localization to plastids. The apparent maximal velocity (Vmax app) values for LOX-catalyzed LeA oxidation were highest for LOX4 (128 nmol·s-1·mg protein-1), with a Km value of 5.8 µM. A. thaliana 13-LOXs, in cascade with 12-OPDA pathway enzymes, synthesized 12-OPDA and OCPD from LeA and docosahexaenoic acid, previously shown only for LOX6. The activities of the four isoforms were differently affected by physiologically relevant chemicals, such as Mg2+, Ca2+, Cu2+ and Cd2+, and by 12-OPDA and MJ. As demonstrated for LOX4, 12-OPDA inhibited enzymatic LeA hydroperoxidation, with half-maximal enzyme inhibition at 48 µM. Biochemical interactions, such as the sensitivity of LOX toward thiol-reactive agents belonging to cyclopentenone prostaglandins, are suggested to occur in human LOX homologs. Furthermore, we conclude that 13-LOXs are isoforms with rather specific functional and regulatory enzymatic features.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lipoxigenase/metabolismo , Acetatos/metabolismo , Sequência de Aminoácidos , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Linoleicos/metabolismo , Oxilipinas/metabolismo
3.
Plant Cell Physiol ; 61(3): 584-595, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834385

RESUMO

Arabidopsis (Arabidopsis thaliana) 12-oxophytodienoic acid reductase isoform 3 (OPR3) is involved in the synthesis of jasmonic acid (JA) by reducing the α,ß-unsaturated double bond of the cyclopentenone moiety in 12-oxophytodienoic acid (12-OPDA). Recent research revealed that JA synthesis is not strictly dependent on the peroxisomal OPR3. The ability of OPR3 to reduce trinitrotoluene suggests that the old yellow enzyme homolog OPR3 has additional functions. Here, we show that OPR3 catalyzes the reduction of a wide spectrum of electrophilic species that share a reactivity toward the major redox buffers glutathione (GSH) and ascorbate (ASC). Furthermore, we show that 12-OPDA reacts with ASC to form an ASC-12-OPDA adduct, but in addition OPR3 has the ability to regenerate ASC from monodehydroascorbate. The presented data characterize OPR3 as a bifunctional enzyme with NADPH-dependent α,ß-ketoalkene double-bond reductase and monodehydroascorbate reductase activities (MDHAR). opr3 mutants showed a slightly less-reduced ASC pool in leaves in line with the MDHAR activity of OPR3 in vitro. These functions link redox homeostasis as mediated by ASC and GSH with OPR3 activity and metabolism of reactive electrophilic species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Ácidos Graxos Insaturados/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ácido Desidroascórbico/análogos & derivados , Regulação da Expressão Gênica de Plantas , Homeostase/fisiologia , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Estrutura Terciária de Proteína , Transcriptoma
5.
Environ Sci Technol ; 54(12): 7524-7532, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32432460

RESUMO

The industrial sector represents roughly 22% of U.S. emissions. Unlike emissions from fossil-fueled power plants, the carbon footprint of the industrial sector represents a complex mixture of stationary combustion and process emissions produced as a reaction byproduct of cement, iron and steel, glass, and oil production. This study quantifies the potential opportunities for low-cost carbon capture and storage (CCS) scenarios with process emissions from the U.S. industrial sector by analyzing the variabilities in point-source capture and geographic proximity to relevant sinks, specifically enhanced oil recovery (EOR) and geologic sequestration opportunities. Using a technology-agnostic cost model developed from mature CO2 capture technologies, costs of CCS are calculated for each of the 656 facilities considered, with application of the U.S. federal tax credit 45Q to qualifying facilities. Capture of these targeted industrial process emission streams may lead to the avoidance of roughly 195 MtCO2/yr (188 MtCO2/yr qualifying for 45Q). A total of 123 facilities have the potential to avoid roughly 68.5 MtCO2/yr at costs below $40/tCO2 delivered. This could be competitive for using CO2 for EOR depending on the price of oil. At regional CO2 collection hubs, emissions of 40 MtCO2/yr can be avoided within 100 miles of the existing Louisiana-Mississippi and Texas-New Mexico pipelines.


Assuntos
Sequestro de Carbono , Carbono , Dióxido de Carbono/análise , Louisiana , Mississippi , New Mexico , Texas
6.
Proc Natl Acad Sci U S A ; 114(43): 11464-11469, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073072

RESUMO

The structure of the competitive network is an important driver of biodiversity and coexistence in natural communities. In addition to determining which species survive, the nature and intensity of competitive interactions within the network also affect the growth, productivity, and abundances of those individuals that persist. As such, the competitive network structure may likewise play an important role in determining community-level functioning by capturing the net costs of competition. Here, using an experimental system comprising 18 wood decay basidiomycete fungi, we test this possibility by quantifying the links among competitive network structure, species diversity, and community function. We show that species diversity alone has negligible impacts on community functioning, but that diversity interacts with two key properties of the competitive network-competitive intransitivity and average competitive ability-to ultimately shape biomass production, respiration, and carbon use efficiency. Most notably, highly intransitive communities comprising weak competitors exhibited a positive diversity-function relationship, whereas weakly intransitive communities comprising strong competitors exhibited a negative relationship. These findings demonstrate that competitive network structure can be an important determinant of community-level functioning, capturing a gradient from weakly to strongly competitive communities. Our research suggests that the competitive network may therefore act as a unifying link between diversity and function, providing key insight as to how and when losses in biodiversity will impact ecosystem function.


Assuntos
Biodiversidade , Evolução Biológica , Fungos/genética , Fungos/fisiologia , Modelos Biológicos
7.
Ecol Lett ; 22(11): 1776-1786, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31373160

RESUMO

Intraspecific variation is at the core of evolutionary theory, and yet, from an ecological perspective, we have few robust expectations for how this variation should affect the dynamics of large communities. Here, by adapting an approach from evolutionary game theory, we show that the incorporation of phenotypic variability into competitive networks dramatically alters the dynamics across ecological timescales, stabilising the systems and buffering the communities against demographic perturbations. The beneficial effects of phenotypic variability are strongest when there are substantial differences among phenotypes and when phenotypes are inherited with moderately high fidelity; yet even low levels of variation lead to significant increases in diversity, stability, and robustness. By identifying a simple and ubiquitous stabilising force in competitive communities, this work contributes to our core understanding of how biological diversity is maintained in natural systems.


Assuntos
Evolução Biológica , Ecossistema , Biodiversidade , Variação Biológica da População , Fenótipo
8.
Ecol Lett ; 22(6): 1028-1037, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30900803

RESUMO

Coexistence in ecological communities is governed largely by the nature and intensity of species interactions. Countless studies have proposed methods to infer these interactions from empirical data, yet models parameterised using such data often fail to recover observed coexistence patterns. Here, we propose a method to reconcile empirical parameterisations of community dynamics with species-abundance data, ensuring that the predicted equilibrium is consistent with the observed abundance distribution. To illustrate the approach, we explore two case studies: an experimental freshwater algal community and a long-term time series of displacement in an intertidal community. We demonstrate how our method helps recover observed coexistence patterns, capture the core dynamics of the system, and, in the latter case, predict the impacts of experimental extinctions. Collectively, these results demonstrate an intuitive approach for reconciling observed and empirical data, improving our ability to explore the links between species interactions and coexistence in natural systems.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
9.
Ecol Lett ; 21(3): 324-334, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377488

RESUMO

Ecological networks that exhibit stable dynamics should theoretically persist longer than those that fluctuate wildly. Thus, network structures which are over-represented in natural systems are often hypothesised to be either a cause or consequence of ecological stability. Rarely considered, however, is that these network structures can also be by-products of the processes that determine how new species attempt to join the community. Using a simulation approach in tandem with key results from random matrix theory, we illustrate how historical assembly mechanisms alter the structure of ecological networks. We demonstrate that different community assembly scenarios can lead to the emergence of structures that are often interpreted as evidence of 'selection for stability'. However, by controlling for the underlying selection pressures, we show that these assembly artefacts-or spandrels-are completely unrelated to stability or selection, and are instead by-products of how new species are introduced into the system. We propose that these network-assembly spandrels are critically overlooked aspects of network theory and stability analysis, and we illustrate how a failure to adequately account for historical assembly can lead to incorrect inference about the causes and consequences of ecological stability.


Assuntos
Ecossistema , Modelos Biológicos , Ecologia
10.
Ecology ; 99(4): 801-811, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29465748

RESUMO

Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions.


Assuntos
Micobioma , Biodiversidade , Fungos , Nitrogênio , Madeira/microbiologia
11.
J Exp Bot ; 69(22): 5341-5354, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30169821

RESUMO

Forty years ago, 12-oxophytodienoic acid (12-OPDA) was reported as a prostaglandin (PG)-like metabolite of linolenic acid found in extracts of flaxseed. Since then, numerous studies have determined the role of 12-OPDA in regulating plant immunity, seed dormancy, and germination. This review summarizes our current knowledge of the regulation of 12-OPDA synthesis in the chloroplast and 12-OPDA-dependent signaling in gene expression and targeting protein functions. We describe the properties of OPDA that are linked to the activities of PGs, which are derived from arachidonic acid and act as tissue hormones in animals, including humans. The similarity of OPDA with bioactive PGs is particularly evident for the most-studied cyclopentenone, PG 15-dPGJ2. In addition to chemical approaches towards 12-OPDA synthesis, bio-organic synthesis strategies for 12-OPDA and analogous substances have recently been established. The resulting availability of OPDA will aid the identification of additional effector proteins, help in elucidating the mechanisms of OPDA sensing and transmission, and will foster the analysis of the physiological responses to OPDA in plants. There is a need to determine the compartmentation and transport of 12-OPDA and its conjugates, over long distances as well as short. It will be important to further study OPDA in animal and human cells, for example with respect to beneficial anti-inflammatory and anti-cancer activities.


Assuntos
Aclimatação , Cloroplastos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Células Vegetais/metabolismo , Transdução de Sinais , Oxilipinas , Estresse Fisiológico
12.
Bioorg Med Chem ; 26(7): 1356-1364, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28818464

RESUMO

Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta.


Assuntos
Ciclopentanos/síntese química , Ácidos Docosa-Hexaenoicos/química , Ácido alfa-Linolênico/química , Ciclopentanos/química , Estrutura Molecular , Estereoisomerismo
13.
Proc Natl Acad Sci U S A ; 112(22): 7033-8, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038557

RESUMO

Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks.


Assuntos
Mudança Climática , Retroalimentação , Cadeia Alimentar , Fungos/fisiologia , Isópodes/fisiologia , Modelos Teóricos , Microbiologia do Solo , Análise de Variância , Animais , Massachusetts , Nitrogênio/metabolismo
14.
J Biol Chem ; 291(49): 25567-25577, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789707

RESUMO

The facultative intracellular pathogen Listeria monocytogenes causes listeriosis, a rare but life-threatening disease. Host cell entry begins with activation of the human receptor tyrosine kinase MET through the bacterial invasion protein InlB, which contains an internalin domain, a B-repeat, and three GW domains. The internalin domain is known to bind MET, but no interaction partner is known for the B-repeat. Adding the B-repeat to the internalin domain potentiates MET activation and is required to stimulate Madin-Darby canine kidney (MDCK) cell scatter. Therefore, it has been hypothesized that the B-repeat may bind a co-receptor on host cells. To test this hypothesis, we mutated residues that might be important for binding an interaction partner. We identified two adjacent residues in strand ß2 of the ß-grasp fold whose mutation abrogated induction of MDCK cell scatter. Biophysical analysis indicated that these mutations do not alter protein structure. We then tested these mutants in human HT-29 cells that, in contrast to the MDCK cells, were responsive to the internalin domain alone. These assays revealed a dominant negative effect, reducing the activity of a construct of the internalin domain and mutated B-repeat below that of the individual internalin domain. Phosphorylation assays of MET and its downstream targets AKT and ERK confirmed the dominant negative effect. Attempts to identify a host cell receptor for the B-repeat were not successful. We conclude that there is limited support for a co-receptor hypothesis and instead suggest that the B-repeat contributes to MET activation through low affinity homodimerization.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Células A549 , Animais , Proteínas de Bactérias/genética , Chlorocebus aethiops , Cães , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Células Madin Darby de Rim Canino , Proteínas de Membrana/genética , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Sequências Repetitivas de Aminoácidos , Células Vero
15.
Ecol Lett ; 20(8): 1034-1042, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28677157

RESUMO

The efficiency by which fungi decompose organic matter contributes to the amount of carbon that is retained in biomass vs. lost to the atmosphere as respiration. This carbon use efficiency (CUE) is affected by various abiotic conditions, including temperature and nutrient availability. Theoretically, the physiological costs of interspecific interactions should likewise alter CUE, yet the magnitude of these costs is untested. Here we conduct a microcosm experiment to quantify how interactions among wood-decay basidiomycete fungi alter growth, respiration and CUE across a temperature and nitrogen gradient. We show that species interactions induced consistent declines in CUE, regardless of abiotic conditions. Multispecies communities exhibited reductions in CUE of up to 25% relative to individual CUE, with this biotic effect being greater than the observed variation attributable to abiotic conditions. Our results suggest that the extent to which fungal-mediated carbon fluxes respond to environmental change may be influenced strongly by species interactions.


Assuntos
Carbono , Ecossistema , Biomassa , Fungos , Nitrogênio
16.
Plant Cell Physiol ; 57(7): 1415-1425, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26872837

RESUMO

2-Cysteine peroxiredoxins (2-CysPrxs) switch between functions as a thiol peroxidase, chaperone, an interaction partner and possibly a proximity-based oxidase in a redox-dependent manner. In photosynthetic eukaryotes, 2-CysPrx localizes to the plastid, functions in the context of photosynthesis and enables an ascorbate peroxidase-independent water-water cycle for detoxifying H2O2 The high degree of evolutionary conservation of 2-CysPrx suggests that the switching is an essential characteristic and needed to transduce redox information to downstream pathways and regulation. The study aimed at exploring the dissociation behavior of 2-CysPrx and its interactions with cyclophilin depending on bulk phase conditions. Isothermal titration microcalorimetry (ITC), dynamic light scattering and size exclusion chromatography (SEC) proved the previously suggested model that reduced 2-CysPrx below a critical transition concentration (CTC) exists in its dimeric state, and above the CTC adopts the decameric state. The presence of cyclophilin 20-3 (Cyp20-3) affected the CTC of a 2-CysPrx decamer suggesting interaction which was further quantified by direct titration of 2-CysPrx with Cyp20-3, and in overlays. Finally catalytic inactivation assays showed the higher catalytic efficiency of 2-CysPrx at pH 8 compared with pH 7.2, but also revealed increased inactivation by hyperoxidation at pH 8. Interestingly, calculation of the average turnover number until inactivation gave rather similar values of 243 and 268 catalytic cycles at pH 8 and pH 7.2, respectively. These quantitative data support a model where 2-CysPrx and Cyp20-3, by interaction, form a redox-sensitive regulatory module in the chloroplast which is under control of the photosynthesis-linked stromal pH value, the redox state and additional stromal protein factor(s).


Assuntos
Proteínas de Arabidopsis/metabolismo , Ciclofilinas/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Multimerização Proteica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Calorimetria , Cromatografia em Gel , Difusão Dinâmica da Luz , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Oxirredução , Ligação Proteica , Conformação Proteica , Termodinâmica
17.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26136444

RESUMO

Linking competitive outcomes to environmental conditions is necessary for understanding species' distributions and responses to environmental change. Despite this importance, generalizable approaches for predicting competitive outcomes across abiotic gradients are lacking, driven largely by the highly complex and context-dependent nature of biotic interactions. Here, we present and empirically test a novel niche model that uses functional traits to model the niche space of organisms and predict competitive outcomes of co-occurring populations across multiple resource gradients. The model makes no assumptions about the underlying mode of competition and instead applies to those settings where relative competitive ability across environments correlates with a quantifiable performance metric. To test the model, a series of controlled microcosm experiments were conducted using genetically related strains of a widespread microbe. The model identified trait microevolution and performance differences among strains, with the predicted competitive ability of each organism mapped across a two-dimensional carbon and nitrogen resource space. Areas of coexistence and competitive dominance between strains were identified,and the predicted competitive outcomes were validated in approximately 95% of the pairings. By linking trait variation to competitive ability, our work demonstrates a generalizable approach for predicting and modelling competitive outcomes across changing environmental contexts.


Assuntos
Ecossistema , Interações Microbianas , Modelos Biológicos , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética
18.
Glob Chang Biol ; 20(9): 2983-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24692253

RESUMO

The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single-site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine-textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/estatística & dados numéricos , Florestas , Microbiota/genética , Microbiologia do Solo , Solo/química , Análise de Variância , Sequência de Bases , Dióxido de Carbono/metabolismo , Ácidos Graxos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Lineares , Dados de Sequência Molecular , Porto Rico , Especificidade da Espécie , Estados Unidos
19.
PeerJ ; 12: e16896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436026

RESUMO

Standardizing and translating species names from different databases is key to the successful integration of data sources in biodiversity research. There are numerous taxonomic name-resolution applications that implement increasingly powerful name-cleaning and matching approaches, allowing the user to resolve species relative to multiple backbones simultaneously. Yet there remains no principled approach for combining information across these underlying taxonomic backbones, complicating efforts to combine and merge species lists with inconsistent and conflicting taxonomic information. Here, we present Treemendous, an open-source software package for the R programming environment that integrates taxonomic relationships across four publicly available backbones to improve the name resolution of tree species. By mapping relationships across the backbones, this package can be used to resolve datasets with conflicting and inconsistent taxonomic origins, while ensuring the resulting species are accepted and consistent with a single reference backbone. The user can chain together different functionalities ranging from simple matching to a single backbone, to graph-based iterative matching using synonym-accepted relations across all backbones in the database. In addition, the package allows users to 'translate' one tree species list into another, streamlining the assimilation of new data into preexisting datasets or models. The package provides a flexible workflow depending on the use case, and can either be used as a stand-alone name-resolution package or in conjunction with existing packages as a final step in the name-resolution pipeline. The Treemendous package is fast and easy to use, allowing users to quickly merge different data sources by standardizing their species names according to the regularly updated database. By combining taxonomic information across multiple backbones, the package increases matching rates and minimizes data loss, allowing for more efficient translation of tree species datasets to aid research into forest biodiversity and tree ecology.


Assuntos
Biodiversidade , Ecologia , Bases de Dados Factuais , Florestas , Software , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa