Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32300252

RESUMO

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Assuntos
Pesquisa Biomédica/normas , Transição Epitelial-Mesenquimal , Animais , Movimento Celular , Plasticidade Celular , Consenso , Biologia do Desenvolvimento/normas , Humanos , Neoplasias/patologia , Terminologia como Assunto
2.
Nat Rev Mol Cell Biol ; 18(1): 43-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677859

RESUMO

Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis.

3.
Nat Rev Mol Cell Biol ; 17(2): 97-109, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26726037

RESUMO

Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.


Assuntos
Comunicação Celular , Movimento Celular , Proteínas da Matriz Extracelular/genética , Morfogênese/genética , Invasividade Neoplásica/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Polaridade Celular , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Cicatrização/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Nature ; 600(7890): 690-694, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880503

RESUMO

Collective cell migration underlies morphogenesis, wound healing and cancer invasion1,2. Most directed migration in vivo has been attributed to chemotaxis, whereby cells follow a chemical gradient3-5. Cells can also follow a stiffness gradient in vitro, a process called durotaxis3,4,6-8, but evidence for durotaxis in vivo is lacking6. Here we show that in Xenopus laevis the neural crest-an embryonic cell population-self-generates a stiffness gradient in the adjacent placodal tissue, and follows this gradient by durotaxis. The gradient moves with the neural crest, which is continually pursuing a retreating region of high substrate stiffness. Mechanistically, the neural crest induces the gradient due to N-cadherin interactions with the placodes and senses the gradient through cell-matrix adhesions, resulting in polarized Rac activity and actomyosin contractility, which coordinates durotaxis. Durotaxis synergizes with chemotaxis, cooperatively polarizing actomyosin machinery of the cell group to prompt efficient directional collective cell migration in vivo. These results show that durotaxis and dynamic stiffness gradients exist in vivo, and gradients of chemical and mechanical signals cooperate to achieve efficient directional cell migration.


Assuntos
Movimento Celular , Crista Neural/citologia , Maleabilidade , Actomiosina/metabolismo , Animais , Polaridade Celular , Quimiotaxia , Feminino , Dureza , Xenopus laevis/embriologia , Proteínas rac de Ligação ao GTP/metabolismo
6.
Annu Rev Genet ; 52: 43-63, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30476447

RESUMO

Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.


Assuntos
Movimento Celular/genética , Quimiotaxia/genética , Desenvolvimento Embrionário/genética , Crista Neural/crescimento & desenvolvimento , Animais , Linhagem da Célula/genética , Crista Neural/citologia
7.
Semin Cell Dev Biol ; 141: 63-73, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35450765

RESUMO

Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.


Assuntos
Biologia do Desenvolvimento , Biologia Sintética , Morfogênese , Movimento Celular
8.
Semin Cell Dev Biol ; 147: 83-90, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36754751

RESUMO

Understanding the mechanism by which cells coordinate their differentiation and migration is critical to our understanding of many fundamental processes such as wound healing, disease progression, and developmental biology. Mathematical models have been an essential tool for testing and developing our understanding, such as models of cells as soft spherical particles, reaction-diffusion systems that couple cell movement to environmental factors, and multi-scale multi-physics simulations that combine bottom-up rule-based models with continuum laws. However, mathematical models can often be loosely related to data or have so many parameters that model behaviour is weakly constrained. Recent methods in machine learning introduce new means by which models can be derived and deployed. In this review, we discuss examples of mathematical models of aspects of developmental biology, such as cell migration, and how these models can be combined with these recent machine learning methods.


Assuntos
Simulação por Computador , Biologia do Desenvolvimento , Modelos Biológicos , Morfogênese , Biologia do Desenvolvimento/métodos , Biologia do Desenvolvimento/tendências , Movimento Celular , Simulação por Computador/tendências , Aprendizado de Máquina , Humanos , Animais
9.
Cell Mol Life Sci ; 81(1): 242, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811420

RESUMO

Cell fate determination, a vital process in early development and adulthood, has been the focal point of intensive investigation over the past decades. Its importance lies in its critical role in shaping various and diverse cell types during embryonic development and beyond. Exploration of cell fate determination started with molecular and genetic investigations unveiling central signaling pathways and molecular regulatory networks. The molecular studies into cell fate determination yielded an overwhelming amount of information invoking the notion of the complexity of cell fate determination. However, recent advances in the framework of biomechanics have introduced a paradigm shift in our understanding of this intricate process. The physical forces and biochemical interplay, known as mechanotransduction, have been identified as a pivotal drive influencing cell fate decisions. Certainly, the integration of biomechanics into the process of cell fate pushed our understanding of the developmental process and potentially holds promise for therapeutic applications. This integration was achieved by identifying physical forces like hydrostatic pressure, fluid dynamics, tissue stiffness, and topography, among others, and examining their interplay with biochemical signals. This review focuses on recent advances investigating the relationship between physical cues and biochemical signals that control cell fate determination during early embryonic development.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Mecanotransdução Celular , Animais , Desenvolvimento Embrionário/fisiologia , Humanos , Linhagem da Célula , Fenômenos Biomecânicos , Transdução de Sinais
10.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822717

RESUMO

Cells are permanently exposed to a multitude of different kinds of signals: however, how cells respond to simultaneous extracellular signals within a complex in vivo environment is poorly understood. Here, we studied the role of the mechanosensitive ion channel Piezo1 on the migration of the neural crest, a multipotent embryonic cell population. We identify that Piezo1 is required for the migration of Xenopus cephalic neural crest. We show that loss of Piezo1 promotes focal adhesion turnover and cytoskeletal dynamics by controlling Rac1 activity, leading to increased speed of migration. Moreover, overactivation of Rac1, due to Piezo1 inhibition, counteracts cell migration inhibitory signals by Semaphorin 3A and Semaphorin 3F, generating aberrant neural crest invasion in vivo. Thus, we find that, for directional migration in vivo, neural crest cells require a tight regulation of Rac1, by semaphorins and Piezo1. We reveal here that a balance between a myriad of signals through Rac1 dictates cell migration in vivo, a mechanism that is likely to be conserved in other cell migration processes.


Assuntos
Movimento Celular , Canais Iônicos/metabolismo , Crista Neural/embriologia , Semaforina-3A/metabolismo , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Animais , Canais Iônicos/genética , Crista Neural/citologia , Semaforina-3A/genética , Proteínas de Xenopus/genética , Xenopus laevis
11.
Nature ; 554(7693): 523-527, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29443958

RESUMO

Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis.


Assuntos
Movimento Celular , Mecanotransdução Celular , Mesoderma/fisiologia , Morfogênese , Crista Neural/citologia , Xenopus laevis/embriologia , Animais , Transição Epitelial-Mesenquimal , Matriz Extracelular , Feminino , Gastrulação , Dureza , Integrinas/metabolismo , Mesoderma/citologia , Mesoderma/embriologia
12.
Dev Biol ; 492: 79-86, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206829

RESUMO

Collective cell migration is essential for embryonic development, tissue regeneration and repair, and has been implicated in pathological conditions such as cancer metastasis. It is, in part, directed by external cues that promote front-to-rear polarity in individual cells. However, our understanding of the pathways that underpin the directional movement of cells in response to external cues remains incomplete. To examine this issue we made use of neural crest cells (NC), which migrate as a collective during development to generate vital structures including bones and cartilage. Using a candidate approach, we found an essential role for Ran-binding protein 1 (RanBP1), a key effector of the nucleocytoplasmic transport pathway, in enabling directed migration of these cells. Our results indicate that RanBP1 is required for establishing front-to-rear polarity, so that NCs are able to chemotax. Moreover, our work suggests that RanBP1 function in chemotaxis involves the polarity kinase LKB1/PAR4. We envisage that regulated nuclear export of LKB1 through Ran/RanBP1 is a key regulatory step required for establishing front-to-rear polarity and thus chemotaxis, during NC collective migration.


Assuntos
Crista Neural , Proteínas Nucleares , Gravidez , Feminino , Humanos , Crista Neural/metabolismo , Proteínas Nucleares/metabolismo , Movimento Celular/fisiologia , Quimiotaxia
13.
Biochem Soc Trans ; 51(3): 1009-1021, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37114613

RESUMO

From a physical perspective, morphogenesis of tissues results from interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognised, whereas the importance of tissue material properties in vivo, like stiffness, has only begun to receive attention in recent years. In this mini-review, we highlight key themes and concepts that have emerged related to how tissue stiffness, a fundamental material property, guides various morphogenetic processes in living organisms.


Assuntos
Fenômenos Biomecânicos , Morfogênese
14.
Biochem Soc Trans ; 51(4): 1733-1745, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37610008

RESUMO

Physical properties of tissue are increasingly recognised as major regulatory cues affecting cell behaviours, particularly cell migration. While these properties of the extracellular matrix have been extensively discussed, the contribution from the cellular components that make up the tissue are still poorly appreciated. In this mini-review, we will discuss two major physical components: stiffness and topology with a stronger focus on cell-cell interactions and how these can impact cell migration.


Assuntos
Comunicação Celular , Matriz Extracelular , Citosol , Movimento Celular , Vírion
16.
Semin Cell Dev Biol ; 93: 55-68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859995

RESUMO

Cell migration is essential for a wide range of biological processes such as embryo morphogenesis, wound healing, regeneration, and also in pathological conditions, such as cancer. In such contexts, cells are required to migrate as individual entities or as highly coordinated collectives, both of which requiring cells to respond to molecular and mechanical cues from their environment. However, whilst the function of chemical cues in cell migration is comparatively well understood, the role of tissue mechanics on cell migration is just starting to be studied. Recent studies suggest that the dynamic tuning of the viscoelasticity within a migratory cluster of cells, and the adequate elastic properties of its surrounding tissues, are essential to allow efficient collective cell migration in vivo. In this review we focus on the role of viscoelasticity in the control of collective cell migration in various cellular systems, mentioning briefly some aspects of single cell migration. We aim to provide details on how viscoelasticity of collectively migrating groups of cells and their surroundings is adjusted to ensure correct morphogenesis, wound healing, and metastasis. Finally, we attempt to show that environmental viscoelasticity triggers molecular changes within migrating clusters and that these new molecular setups modify clusters' viscoelasticity, ultimately allowing them to migrate across the challenging geometries of their microenvironment.


Assuntos
Movimento Celular , Humanos , Termodinâmica , Viscosidade
17.
J Cell Sci ; 132(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988138

RESUMO

Collective cell migration is a highly complex process in which groups of cells move together. A fundamental question is how cell ensembles can migrate efficiently. In some cases, the group is no more than a collection of individual cells. In others, the group behaves as a supracellular unit, whereby the cell group could be considered as a giant 'supracell', the concept of which was conceived over a century ago. The development of recent tools has provided considerable evidence that cell collectives are highly cooperative, and their migration can better be understood at the tissue level, rather than at the cell level. In this Review, we will define supracellular migration as a type of collective cell migration that operates at a scale higher than the individual cells. We will discuss key concepts of supracellular migration, review recent evidence of collectives exhibiting supracellular features and argue that many seemingly complex collective movements could be better explained by considering the participating cells as supracellular entities.


Assuntos
Adesão Celular , Movimento Celular , Polaridade Celular , Animais , Humanos
18.
Development ; 145(22)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30297374

RESUMO

Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.


Assuntos
Movimento Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Crista Neural/citologia , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Adesões Focais/efeitos dos fármacos , Modelos Biológicos , Morfolinos/farmacologia , Crista Neural/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Xenopus/embriologia , Quinases da Família src/metabolismo
19.
Development ; 144(13): 2456-2468, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526750

RESUMO

A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration.


Assuntos
Caderinas/metabolismo , Movimento Celular , Inibição de Contato , Locomoção , Crista Neural/citologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Xenopus laevis/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Inibição de Contato/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
20.
PLoS Comput Biol ; 15(4): e1007002, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009457

RESUMO

A fundamental question in embryo morphogenesis is how a complex pattern is established in seemingly uniform tissues. During vertebrate development, neural crest cells differentiate as a continuous mass of tissue along the neural tube and subsequently split into spatially distinct migratory streams to invade the rest of the embryo. How these streams are established is not well understood. Inhibitory signals surrounding the migratory streams led to the idea that position and size of streams are determined by a pre-pattern of such signals. While clear evidence for a pre-pattern in the cranial region is still lacking, all computational models of neural crest migration published so far have assumed a pre-pattern of negative signals that channel the neural crest into streams. Here we test the hypothesis that instead of following a pre-existing pattern, the cranial neural crest creates their own migratory pathway by interacting with the surrounding tissue. By combining theoretical modeling with experimentation, we show that streams emerge from the interaction of the hindbrain neural crest and the neighboring epibranchial placodal tissues, without the need for a pre-existing guidance cue. Our model suggests that the initial collective neural crest invasion is based on short-range repulsion and asymmetric attraction between neighboring tissues. The model provides a coherent explanation for the formation of cranial neural crest streams in concert with previously reported findings and our new in vivo observations. Our results point to a general mechanism of inducing collective invasion patterns.


Assuntos
Morfogênese/fisiologia , Crista Neural/embriologia , Animais , Anuros/embriologia , Adesão Celular/fisiologia , Biologia Computacional , Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Camundongos , Modelos Biológicos , Rombencéfalo/embriologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa