Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(34): E2258-66, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22829665

RESUMO

We show that after tail amputation in Ambystoma mexicanum (Axolotl) the correct number and spacing of dorsal root ganglia are regenerated. By transplantation of spinal cord tissue and nonclonal neurospheres, we show that the central spinal cord represents a source of peripheral nervous system cells. Interestingly, melanophores migrate from preexisting precursors in the skin. Finally, we demonstrate that implantation of a clonally derived spinal cord neurosphere can result in reconstitution of all examined cell types in the regenerating central spinal cord, suggesting derivation of a cell with spinal cord stem cell properties.


Assuntos
Sistema Nervoso Central/fisiologia , Sistema Nervoso Periférico/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Sequência de Aminoácidos , Animais , Gânglios Espinais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Medula Espinal/citologia , Células-Tronco/citologia , Urodelos
2.
Elife ; 52016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27885987

RESUMO

Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a high-proliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.


Assuntos
Proliferação de Células , Células-Tronco Neurais/fisiologia , Regeneração da Medula Espinal , Ambystoma mexicanum , Animais , Modelos Teóricos , Análise Espaço-Temporal
3.
Biosci Rep ; 23(4): 187-97, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14748539

RESUMO

The confluence-dependent resistance of human larynx carcinoma HEp-2 cells to hydrogen peroxide and a new antitumor drug based on the combination of vitamins C and B12b was studied. It was found that this resistance in growing cells is suppressed by the disruption of intercellular contacts by EGTA and is related neither to the activity of P-glycoprotein nor to the content of intracellular glutathione and the activities of glutathione S-transferases, glutathione peroxidase and glutathionine reductase. Here we showed that the level of expression of the small heat shock protein hsp27, which is known to protect cells from a variety of stresses associated with apoptosis, in growing confluent cells both in the presence and absence of the vitamins B12b and C is much higher (about 20-25 times) than in non-confluent cells. Taken together, the results suggest that the confluence-dependent resistance of cells to the combination of vitamins C and B12b and to hydrogen peroxide is mediated by hsp27 overexpression, which is activated via cell-cell adhesion.


Assuntos
Carcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas de Choque Térmico/fisiologia , Neoplasias Laríngeas/metabolismo , Proteínas de Neoplasias/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ácido Ascórbico/farmacologia , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Divisão Celular/efeitos dos fármacos , Ácido Egtázico/farmacologia , Glutationa/metabolismo , Proteínas de Choque Térmico HSP27 , Humanos , Peróxido de Hidrogênio/farmacologia , Hidroxocobalamina/farmacologia , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Laríngeas/patologia , Chaperonas Moleculares , Células Tumorais Cultivadas
5.
Methods Mol Biol ; 916: 197-202, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22914942

RESUMO

Urodele amphibians such as axolotl are well known for their regenerative potential of the damaged central nervous system structures. Upon tail amputation, neural stem cells behind the amputation plane undergo self-renewing divisions and contribute to the functional spinal cord in the newly formed regenerate. The neural stem cells, harboring this potential, can be isolated from the animal and cultured under the suspension conditions. After 2-3 weeks in vitro they will proliferate and form the floating aggregates of the spherical shape, so-called neurospheres. Reimplanted back into the animal, the neurospheres can efficiently integrate in the spinal cord lesion and contribute to the following spinal cord regeneration events. Here we demonstrate the unique method of the axolotl tail spinal cord regeneration from the implanted neurosphere.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Regeneração , Medula Espinal/citologia , Medula Espinal/fisiologia , Transplante de Células-Tronco/métodos , Cauda/fisiologia , Ambystoma mexicanum , Amputação Cirúrgica , Animais , Técnicas de Cultura de Células , Proliferação de Células , Separação Celular , Cauda/cirurgia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa