Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 53(4): 242-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26729821

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive genetic disorder characterised by dysfunction of motile cilia. Ciliary dysmotility causes poor mucociliary clearance and leads to impairment of pulmonary function and severe respiratory infections. PCD has no specific therapy. With the aim to permanently restore gene function and normalise ciliary motility, we used gene editing to replace mutated with wild-type sequence in defective cells. METHODS: The target gene was dynein heavy chain 11 (DNAH11), an essential component of ciliary structure. Airway ciliated cells were collected from two patients with PCD with DNAH11 nonsense mutations and altered ciliary beating and pattern. Repair of the genetic defect was performed ex vivo by site-specific recombination using transcription activator-like effector nucleases (TALENs). RESULTS: In an epithelial cell line engineered to contain the DNAH11 target site, TALENs cleaved over 80% of the mutated DNAH11 sequence and replaced the mutated sequence with wild-type sequence in about 50% of cells. In airway ciliated cells of patients with PCD, site-specific recombination and normalisation of ciliary beating and pattern occurred in 33% and 29% of cells, respectively. CONCLUSION: This study demonstrates that gene editing can rescue ciliary beating ex vivo, opening up new avenues for treating PCD.


Assuntos
Dineínas do Axonema/genética , Edição de Genes , Terapia Genética , Síndrome de Kartagener/terapia , Adolescente , Linhagem Celular , Movimento Celular/genética , Cílios/metabolismo , Cílios/patologia , Células Epiteliais/patologia , Genótipo , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Lentivirus/genética , Masculino , Fenótipo , Gêmeos
2.
Sci Rep ; 8(1): 9953, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967333

RESUMO

Aortic valve stenosis (AVS) represents a cluster of different phenotypes, considering gradient and flow pattern. Circulating micro RNAs may reflect specific pathophysiological processes and could be useful biomarkers to identify disease. We assessed 80 patients (81, 76.7-84 years; 46, 57.5%females) with severe AVS. We performed bio-humoral evaluation (including circulating miRNA-1, 21, 29, 133) and 2D-echocardiography. Patients were classified according to ACC/AHA groups (D1-D3) and flow-gradient classification, considering normal/low flow, (NF/LF) and normal/high gradient, (NG/HG). Patients with reduced ejection fractionwere characterized by higher levels of miRNA1 (p = 0.003) and miRNA 133 (p = 0.03). LF condition was associated with higher levels of miRNA1 (p = 0.02) and miRNA21 (p = 0.02). Levels of miRNA21 were increased in patients with reduced Global longitudinal strain (p = 0.03). LF-HG and LF-LG showed higher levels of miRNA1 expression (p = 0.005). At one-year follow-up miRNA21 and miRNA29 levels resulted significant independent predictors of reverse remodeling and systolic function increase, respectively. Different phenotypes of AVS may express differential levels and types of miRNAs, which may retain a pathophysiological role in pro-hypertrophic and pro-fibrotic processes.


Assuntos
Estenose da Valva Aórtica/genética , MicroRNAs/sangue , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/cirurgia , Eletrocardiografia/métodos , Feminino , Seguimentos , Expressão Gênica , Implante de Prótese de Valva Cardíaca , Humanos , Masculino , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa