Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36141070

RESUMO

This paper investigates the degree of efficiency for the Moscow Stock Exchange. A market is called efficient if prices of its assets fully reflect all available information. We show that the degree of market efficiency is significantly low for most of the months from 2012 to 2021. We calculate the degree of market efficiency by (i) filtering out regularities in financial data and (ii) computing the Shannon entropy of the filtered return time series. We developed a simple method for estimating volatility and price staleness in empirical data in order to filter out such regularity patterns from return time series. The resulting financial time series of stock returns are then clustered into different groups according to some entropy measures. In particular, we use the Kullback-Leibler distance and a novel entropy metric capturing the co-movements between pairs of stocks. By using Monte Carlo simulations, we are then able to identify the time periods of market inefficiency for a group of 18 stocks. The inefficiency of the Moscow Stock Exchange that we have detected is a signal of the possibility of devising profitable strategies, net of transaction costs. The deviation from the efficient behavior for a stock strongly depends on the industrial sector that it belongs to.

2.
Phys Rev E ; 105(3-1): 034301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428139

RESUMO

Many of the biological, social and man-made networks around us are inherently dynamic, with their links switching on and off over time. The evolution of these networks is often observed to be non-Markovian, and the dynamics of their links are often correlated. Hence, to accurately model these networks, predict their evolution, and understand how information and other relevant quantities propagate over them, the inclusion of both memory and dynamical dependencies between links is key. In this article we introduce a general class of models of temporal networks based on discrete autoregressive processes for link dynamics. As a concrete and useful case study, we then concentrate on a specific model within this class, which allows to generate temporal networks with a specified underlying structural backbone, and with precise control over the dynamical dependencies between links and the strength and length of their memories. In this network model the presence of each link is influenced not only by its past activity, but also by the past activities of other links, as specified by a coupling matrix, which directly controls the causal relations, and hence the correlations, among links. We propose a maximum likelihood method for estimating the model's parameters from data, showing how the model allows a more realistic description of real-world temporal networks and also to predict their evolution. Due to the flexibility of maximum likelihood inference, we illustrate how to deal with heterogeneity and time-varying patterns, possibly including also nonstationary network dynamics. We then use our network model to investigate the role that, both the features of memory and the type of correlations in the dynamics of links have on the properties of processes occurring over a temporal network. Namely, we study the speed of a spreading process, as measured by the time it takes for diffusion to reach equilibrium. Through both numerical simulations and analytical results, we are able to separate the roles of autocorrelations and neighborhood correlations in link dynamics, showing that not only is the speed of diffusion nonmonotonically dependent on the memory length, but also that correlations among neighboring links help to speed up the spreading process, while autocorrelations slow it back down. Our results have implications in the study of opinion formation, the modeling of social networks, and the spreading of epidemics through mobile populations.

3.
Sci Rep ; 11(1): 4919, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649386

RESUMO

Betweenness centrality quantifies the importance of a vertex for the information flow in a network. The standard betweenness centrality applies to static single-layer networks, but many real world networks are both dynamic and made of several layers. We propose a definition of betweenness centrality for temporal multiplexes. This definition accounts for the topological and temporal structure and for the duration of paths in the determination of the shortest paths. We propose an algorithm to compute the new metric using a mapping to a static graph. We apply the metric to a dataset of [Formula: see text]k European flights and compare the results with those obtained with static or single-layer metrics. The differences in the airports rankings highlight the importance of considering the temporal multiplex structure and an appropriate distance metric.

4.
Sci Rep ; 9(1): 10570, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332234

RESUMO

In complex networks, centrality metrics quantify the connectivity of nodes and identify the most important ones in the transmission of signals. In many real world networks, especially in transportation systems, links are dynamic, i.e. their presence depends on time, and travelling between two nodes requires a non-vanishing time. Additionally, many networks are structured on several layers, representing, e.g., different transportation modes or service providers. Temporal generalisations of centrality metrics based on walk-counting, like Katz centrality, exist, however they do not account for non-zero link travel times and for the multiplex structure. We propose a generalisation of Katz centrality, termed Trip Centrality, counting only the walks that can be travelled according to the network temporal structure, i.e. "trips", while also differentiating the contributions of inter- and intra-layer walks to centrality. We show an application to the US air transport system, specifically computing airports' centrality losses due to delays in the flight network.

5.
Phys Rev E ; 99(4-1): 042310, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108631

RESUMO

We study the problem of identifying macroscopic structures in networks, characterizing the impact of introducing link directions on the detectability phase transition. To this end, building on the stochastic block model, we construct a class of nontrivially detectable directed networks. We find closed-form solutions by using the belief propagation method, showing how the transition line depends on the assortativity and the asymmetry of the network. Finally, we numerically identify the existence of a hard phase for detection close to the transition point.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa