Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39010826

RESUMO

Cystic fibrosis-related diabetes (CFRD), the most common comorbidity in cystic fibrosis (CF), leads to increased mortality by accelerating the decline in lung function. Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel ß subunit exhibit spontaneous CF-like lung disease, including airway mucus obstruction and chronic inflammation. Here, we established a chronic CFRD-like model utilizing Scnn1b-Tg mice made diabetic by injection of streptozotocin. In Ussing chamber recordings of trachea, Scnn1b-Tg mice exhibited larger amiloride-sensitive currents and forskolin-activated currents, without a difference in ATP-activated currents compared to wildtype (WT) littermates. Both diabetic WT (WT-D) and diabetic Scnn1b-Tg (Scnn1b-Tg-D) mice on the same genetic background exhibited substantially elevated blood glucose at 8 weeks; glucose levels also were elevated in bronchoalveolar lavage fluid (BALF) Bulk lung RNA-seq data showed significant differences between WT-D and Scnn1b-Tg-D mice. Neutrophil counts in BALF were substantially increased in Scnn1b-Tg-D lungs compared to controls (Scnn1b-Tg-con) and compared to WT-D lungs. Lung histology data showed enhanced parenchymal destruction, alveolar wall thickening, and neutrophilic infiltration in Scnn1b-Tg-D mice compared to WT-D mice, consistent with development of a spontaneous lung infection. We intranasally administered Pseudomonas aeruginosa to induce lung infection in these mice for 24 hours, which led to severe lung leukocytic infiltration and an increase in pro-inflammatory cytokine levels in the BALF. In summary, we established a chronic CFRD-like lung mouse model using the Scnn1b-Tg mice. The model can be utilized for future studies toward understanding the mechanisms underlying the lung pathophysiology associated with CFRD and developing novel therapeutics.

2.
J Allergy Clin Immunol ; 151(1): 118-127.e10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096204

RESUMO

BACKGROUND: The asthma of some children remains poorly controlled, with recurrent exacerbations despite treatment with inhaled corticosteroids. Aside from prior exacerbations, there are currently no reliable predictors of exacerbation-prone asthma in these children and only a limited understanding of the potential underlying mechanisms. OBJECTIVE: We sought to quantify small molecules in the plasma of children with exacerbation-prone asthma through mass spectrometry-based metabolomics. We hypothesized that the plasma metabolome of these children would differ from that of children with non-exacerbation-prone asthma. METHODS: Plasma metabolites were extracted from 4 pediatric asthma cohorts (215 total subjects, with 41 having exacerbation-prone asthma) and detected with a mass spectrometer. High-confidence annotations were retained for univariate analysis and were confirmed by a sensitivity analysis in subjects receiving high-dose inhaled corticosteroids. Metabolites that varied by cohort were excluded. MetaboAnalyst software was used to identify pathways of interest. Concentrations were calculated by reference standardization. RESULTS: We identified 32 unique, cohort-independent metabolites that differed in children with exacerbation-prone asthma compared to children with non-exacerbation-prone asthma. Comparison of metabolite concentrations to literature-reported values for healthy children revealed that most metabolites were decreased in both asthma groups, but more so in exacerbation-prone asthma. Pathway analysis identified arginine, lysine, and methionine pathways as most impacted. CONCLUSIONS: Several plasma metabolites are perturbed in children with exacerbation-prone asthma and are largely related to arginine, lysine, and methionine pathways. While validation is needed, plasma metabolites may be potential biomarkers for exacerbation-prone asthma in children.


Assuntos
Asma , Lisina , Criança , Humanos , Lisina/uso terapêutico , Metionina/uso terapêutico , Arginina , Asma/tratamento farmacológico , Corticosteroides/uso terapêutico , Racemetionina
3.
J Proteome Res ; 19(1): 144-152, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31621328

RESUMO

The most common cause of death in cystic fibrosis (CF) patients is progressive lung function decline, which is punctuated by acute pulmonary exacerbations (APEs). A major challenge is to discover biomarkers for detecting an oncoming APE and allow for pre-emptive clinical interventions. Metabolic profiling of exhaled breath condensate (EBC) samples collected from CF patients before, during, and after APEs and under stable conditions (n = 210) was performed using ultraperformance liquid chromatography (UPLC) coupled to Orbitrap mass spectrometry (MS). Negative ion mode MS data showed that classification between metabolic profiles from "pre-APE" (pending APE before the CF patient had any signs of illness) and stable CF samples was possible with good sensitivities (85.7 and 89.5%), specificities (88.4 and 84.1%), and accuracies (87.7 and 85.7%) for pediatric and adult patients, respectively. Improved classification performance was achieved by combining positive with negative ion mode data. Discriminant metabolites included two potential biomarkers identified in a previous pilot study: lactic acid and 4-hydroxycyclohexylcarboxylic acid. Some of the discriminant metabolites had microbial origins, indicating a possible role of bacterial metabolism in APE progression. The results show promise for detecting an oncoming APE using EBC metabolites, thus permitting early intervention to abort such an event.


Assuntos
Fibrose Cística , Adulto , Biomarcadores , Testes Respiratórios , Criança , Fibrose Cística/diagnóstico , Humanos , Espectrometria de Massas , Metabolômica , Projetos Piloto
4.
J Proteome Res ; 16(2): 550-558, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28152602

RESUMO

Progressive lung function decline and, ultimately, respiratory failure are the most common cause of death in patients with cystic fibrosis (CF). This decline is punctuated by acute pulmonary exacerbations (APEs), and in many cases, there is a failure to return to baseline lung function. Ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry was used to profile metabolites in exhaled breath condensate (EBC) samples from 17 clinically stable CF patients, 9 CF patients with an APE severe enough to require hospitalization (termed APE), 5 CF patients during recovery from a severe APE (termed post-APE), and 4 CF patients who were clinically stable at the time of collection but in the subsequent 1-3 months developed a severe APE (termed pre-APE). A panel containing two metabolic discriminant features, 4-hydroxycyclohexylcarboxylic acid and pyroglutamic acid, differentiated the APE samples from the stable CF samples with 84.6% accuracy. Pre-APE samples were distinguished from stable CF samples by lactic acid and pyroglutamic acid with 90.5% accuracy and in general matched the APE signature when projected onto the APE vs stable CF model. Post-APE samples were on average more similar to stable CF samples in terms of their metabolomic signature. These results show the feasibility of detecting and predicting an oncoming APE or monitoring APE treatment using EBC metabolites.


Assuntos
Cicloexanos/metabolismo , Fibrose Cística/diagnóstico , Fibrose Cística/metabolismo , Ácido Láctico/metabolismo , Metabolômica/métodos , Ácido Pirrolidonocarboxílico/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Testes Respiratórios , Cromatografia Líquida , Fibrose Cística/fisiopatologia , Diagnóstico Precoce , Expiração , Feminino , Humanos , Masculino , Espectrometria de Massas , Projetos Piloto , Índice de Gravidade de Doença
5.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L688-L702, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213469

RESUMO

Cystic fibrosis-related diabetes is the most common comorbidity associated with cystic fibrosis (CF) and correlates with increased rates of lung function decline. Because glucose is a nutrient present in the airways of patients with bacterial airway infections and because insulin controls glucose metabolism, the effect of insulin on CF airway epithelia was investigated to determine the role of insulin receptors and glucose transport in regulating glucose availability in the airway. The response to insulin by human airway epithelial cells was characterized by quantitative PCR, immunoblot, immunofluorescence, and glucose uptake assays. Phosphatidylinositol 3-kinase/protein kinase B (Akt) signaling and cystic fibrosis transmembrane conductance regulator (CFTR) activity were analyzed by pharmacological and immunoblot assays. We found that normal human primary airway epithelial cells expressed glucose transporter 4 and that application of insulin stimulated cytochalasin B-inhibitable glucose uptake, consistent with a requirement for glucose transporter translocation. Application of insulin to normal primary human airway epithelial cells promoted airway barrier function as demonstrated by increased transepithelial electrical resistance and decreased paracellular flux of small molecules. This provides the first demonstration that airway cells express insulin-regulated glucose transporters that act in concert with tight junctions to form an airway glucose barrier. However, insulin failed to increase glucose uptake or decrease paracellular flux of small molecules in human airway epithelia expressing F508del-CFTR. Insulin stimulation of Akt1 and Akt2 signaling in CF airway cells was diminished compared with that observed in airway cells expressing wild-type CFTR. These results indicate that the airway glucose barrier is regulated by insulin and is dysfunctional in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Insulina/metabolismo , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Transformada , Polaridade Celular , Ativação Enzimática , Células Epiteliais/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Receptor de Insulina/metabolismo
6.
J Chem Inf Model ; 57(8): 1932-1946, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657312

RESUMO

Cystic fibrosis (CF) is a lethal, genetic disease found in particular in humans of European origin which is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The search for CF therapies acting by modulating the impaired function of mutant CFTR will be greatly advanced by high resolution structures of CFTR in different states. To date, two medium resolution electron microscopy (EM) structures of CFTR are available (one of a distant zebrafish (Danio rerio) CFTR ortholog and one of human CFTR). The two models are nearly identical to one another, and both correspond to the inward-facing, nucleotide binding domains (NBDs) separated, closed state of the channel. In addition, lower resolution structural data are available for human CFTR in an alternative conformation which likely features associated NBDs and thus geometrically resembles the conducting state of the channel. Multiple homology models of human CFTR in multiple states have been developed over the years, yet their correspondence to the existing structural information is unexplored. In this work we use molecular dynamics flexible fitting (MDFF) simulations to refine two previously described CFTR models based on the available cryo-EM map of the human protein. This map was recorded in the absence of ATP and consequently represents closed-state CFTR yet its features likely correspond to an NBD associated conformation of the protein. Accordingly, the resulting models feature dimerized NBDs yet with no membrane traversing pore. Moreover, the open probability of the new models as deduced from the MDFF trajectories is significantly lower than that deduced from control MD trajectories initiated from the starting models. We propose that the new models correspond to a CFTR conformation which to date was largely unexplored yet is one that is relevant to the gating cycle of the protein. In particular this conformation may participate in rapid channel opening and closing through small allosteric movements controlled by nucleotide binding and dissociation events. Analyzing the resulting trajectories (and not only the final models as is usually the case), we demonstrate that the refined models have good stereochemical properties and are also in favorable agreement with multiple experimental data. Moreover, despite different starting points, the final models share many common features. Finally, we propose that the combination of high resolution cryo-EM maps, which are currently emerging from multiple laboratories, and MDFF simulations will be of value for the development of yet more reliable CFTR models as well as for the identification of binding sites for CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Conformação Proteica
7.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L403-14, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26684250

RESUMO

The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a chloride ion channel, the dysfunction of which directly leads to the life-shortening disease CF. Extracellular loop 1 (ECL1) of CFTR contains several residues involved in stabilizing the open state of the channel; some, including D110, are sites of disease-associated gating mutations. Structures from related proteins suggest that the position of CFTR's extracellular loops may change considerably during gating. To better understand the roles of ECL1 in CFTR function, we utilized functional cysteine cross-linking to determine the effects of modulation of D110C-CFTR and of a double mutant of D110C with K892C in extracellular loop 4 (ECL4). The reducing agent DTT elicited a large potentiation of the macroscopic conductance of D110C/K892C-CFTR, likely due to breakage of a spontaneous disulfide bond between C110 and C892. DTT-reduced D110C/K892C-CFTR was rapidly inhibited by binding cadmium ions with high affinity, suggesting that these residues frequently come in close proximity in actively gating channels. Effects of DTT and cadmium on modulation of pore gating were demonstrated at the single-channel level. Finally, disulfided D110C/K892C-CFTR channels were found to be less sensitive than wild-type or DTT-treated D110C/K892C-CFTR channels to stimulation by IBMX, suggesting an impact of this conformational restriction on channel activation by phosphorylation. The results are best explained in the context of a model of CFTR gating wherein stable channel opening requires correct positioning of functional elements structurally influenced by ECL1.


Assuntos
Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Células Cultivadas , Cisteína/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Relação Estrutura-Atividade
8.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L192-207, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288484

RESUMO

VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR.


Assuntos
Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Sequência de Aminoácidos , Aminofenóis/farmacologia , Animais , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Avaliação Pré-Clínica de Medicamentos , Glicina/análogos & derivados , Glicina/farmacologia , Hidrazinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Nitrobenzoatos/farmacologia , Técnicas de Patch-Clamp , Quinolonas/farmacologia , Deleção de Sequência , Xenopus laevis
9.
Am J Physiol Lung Cell Mol Physiol ; 309(7): L687-99, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209275

RESUMO

Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as "Kalydeco." Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are features of the protein that may be targeted to achieve stimulation of channel activity by structurally diverse compounds. However, neither the mechanisms by which these compounds potentiate mutant CFTR nor the site(s) where these compounds bind have been identified. This knowledge gap partly reflects the lack of appropriate experimental models to provide clues toward the identification of binding sites. Here, we have compared the channel behavior and response to novel and known potentiators of human CFTR (hCFTR) and murine (mCFTR) expressed in Xenopus oocytes. Both hCFTR and mCFTR were blocked by GlyH-101 from the extracellular side, but mCFTR activity was increased with GlyH-101 applied directly to the cytoplasmic side. Similarly, glibenclamide only exhibited a blocking effect on hCFTR but both blocked and potentiated mCFTR in excised membrane patches and in intact oocytes. The clinically used CFTR potentiator VX-770 transiently increased hCFTR by ∼13% but potentiated mCFTR significantly more strongly. Our results suggest that mCFTR pharmacological sensitivities differ from hCFTR, which will provide a useful tool for identifying the binding sites and mechanism for these potentiators.


Assuntos
Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Quinolonas/farmacologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Hidrazinas/farmacologia , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Especificidade da Espécie , Xenopus laevis
10.
Am J Physiol Lung Cell Mol Physiol ; 309(5): L475-87, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26115671

RESUMO

Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTR(wt/wt)) and CuFi-5 (CFTR(ΔF508/ΔF508)) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na(+) channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Junções Comunicantes/patologia , Mucosa Respiratória/metabolismo , Junções Íntimas/patologia , Adulto , Sinalização do Cálcio/genética , Linhagem Celular , Colforsina/farmacologia , Conexina 26 , Conexina 43/biossíntese , Conexina 43/metabolismo , Conexinas/biossíntese , Conexinas/metabolismo , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Células Epiteliais/metabolismo , Junções Comunicantes/genética , Humanos , Masculino , Fenilbutiratos/farmacologia , Transporte Proteico/efeitos dos fármacos , Mucosa Respiratória/citologia , Junções Íntimas/genética
11.
J Biol Chem ; 288(28): 20758-67, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23709221

RESUMO

Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg(352)-Asp(993) and Arg(347)-Asp(924), that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg(347) not only interacts with Asp(924) but also interacts with Asp(993). The tripartite interaction Arg(347)-Asp(924)-Asp(993) mainly contributes to maintaining a stable s2 open subconductance state. The Arg(352)-Asp(993) salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg(352) and Asp(993), channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle.


Assuntos
Arginina/metabolismo , Ácido Aspártico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico , Trifosfato de Adenosina/farmacologia , Algoritmos , Sequência de Aminoácidos , Animais , Arginina/genética , Ácido Aspártico/genética , Sítios de Ligação/genética , Cloretos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , RNA Complementar/genética , Xenopus laevis
12.
Am J Physiol Lung Cell Mol Physiol ; 306(1): L43-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24097557

RESUMO

Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 µl of 1-5 × 10(6) cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD.


Assuntos
Fibrose Cística/complicações , Diabetes Mellitus Experimental/complicações , Hiperglicemia/complicações , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Animais , Carga Bacteriana , Líquido da Lavagem Broncoalveolar , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Hiperglicemia/imunologia , Hiperglicemia/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Técnicas de Cultura de Tecidos
13.
Front Pharmacol ; 15: 1363456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440176

RESUMO

Introduction: ATP-binding cassette (ABC) transporters use the hydrolysis of ATP to power the active transport of molecules, but paradoxically the cystic fibrosis transmembrane regulator (CFTR, ABCC7) forms an ion channel. We previously showed that ATP-binding cassette subfamily C member 4 (ABCC4) is the closest mammalian paralog to CFTR, compared to other ABC transporters. In addition, Lamprey CFTR (Lp-CFTR) is the oldest known CFTR ortholog and has unique structural and functional features compared to human CFTR (hCFTR). The availability of these evolutionarily distant orthologs gives us the opportunity to study the changes in ATPase activity that may be related to their disparate functions. Methods: We utilized the baculovirus expression system with Sf9 insect cells and made use of the highly sensitive antimony-phosphomolybdate assay for testing the ATPase activity of human ABCC4 (hABCC4), Lp-CFTR, and hCFTR under similar experimental conditions. This assay measures the production of inorganic phosphate (Pi) in the nanomolar range. Results: Crude plasma membranes were purified, and protein concentration, determined semi-quantitatively, of hABCC4, Lp-CFTR, and hCFTR ranged from 0.01 to 0.36 µg/µL. No significant difference in expression level was found although hABCC4 trended toward the highest level. hABCC4 was activated by ATP with the equilibrium constant (Kd) 0.55 ± 0.28 mM (n = 8). Estimated maximum ATPase rate (Vmax) for hABCC4 was about 0.2 nmol/µg/min when the protein was activated with 1 mM ATP at 37°C (n = 7). Estimated maximum ATPase rate for PKA-phosphorylated Lp-CFTR reached about half of hCFTR levels in the same conditions. Vmax for both Lp-CFTR and hCFTR were significantly increased in high PKA conditions compared to low PKA conditions. Maximum intrinsic ATPase rate of hABCC4 in the absence of substrate was twice that of hCFTR when activated in 1 mM ATP. Conclusion: The findings here suggest that while both ABCC4 and hCFTR bear one consensus and one degenerate ATPase site, the hCFTR exhibited a reduced intrinsic ATPase activity. In addition, ATPase activity in the CFTR lineage increased from Lp-CFTR to hCFTR. Finally, the studies pave the way to purify hABCC4, Lp-CFTR, and hCFTR from Sf9 cells for their structural investigation, including by cryo-EM, and for studies of evolution in the ABC transporter superfamily.

14.
Rapid Commun Mass Spectrom ; 27(20): 2263-71, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24019192

RESUMO

RATIONALE: Cystic fibrosis related diabetes (CFRD) is an important complication of cystic fibrosis (CF) because it causes acceleration in the decline in lung function. Monitoring concentrations of key metabolites such as glucose in airway lining fluid is necessary for improving our understanding of the biochemical mechanisms linking diabetes and CF. Targeted-metabolomic strategies for glucose quantitation in exhaled breath condensate (EBC) from healthy individuals are presented. METHODS: Three different electrospray ionization mass spectrometry (ESI-MS)-based methods were developed for EBC sample interrogation and glucose quantitation without derivatization. Two methods utilized ultra-high-performance liquid chromatography (UHPLC) coupled to either time-of-flight (TOF) MS or triple quadrupole (QqQ) tandem MS (MS/MS). A third approach involved direct-infusion traveling wave ion mobility spectrometry (TWIMS) with TOF-MS detection. UHPLC/QqQ-MS/MS was used for urea quantitation as the EBC dilution marker. Matrix effects were mitigated using isotopically labeled glucose and urea as internal standards. RESULTS: All the developed methods allowed glucose and urea quantitation in EBC with high accuracy and precision. The UHPLC/TOF-MS and UHPLC/QqQ-MS/MS methods provided similar analytical figures of merit. UHPLC/QqQ-MS/MS provided the highest sensitivity and the lowest limit of detection (LOD) of 1.5 nM in EBC for both glucose and urea. The TWIMS-TOF-MS-based method provided the highest sample throughput capability; however, the glucose LOD was ~3-fold higher than with the two chromatographic methods. CONCLUSIONS: Mass spectrometric methods for the quantitative analysis of trace EBC glucose levels are reported and compared for the first time. The analytical figures of merit demonstrate the applicability of these methods to metabolite analysis of airway samples for CF and CFRD research.


Assuntos
Testes Respiratórios/métodos , Cromatografia Líquida/métodos , Fibrose Cística/metabolismo , Glucose/análise , Espectrometria de Massas em Tandem/métodos , Biomarcadores/análise , Complicações do Diabetes/metabolismo , Humanos , Limite de Detecção , Modelos Lineares , Metabolômica , Reprodutibilidade dos Testes , Ureia/metabolismo
15.
Proc Natl Acad Sci U S A ; 107(27): 12339-44, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566865

RESUMO

Chemical signaling plays an important role in predator-prey interactions and feeding dynamics. Like other organisms that are sessile or slow moving, some marine sponges contain aversive compounds that defend these organisms from predation. We sought to identify and characterize a fish chemoreceptor that detects one of these compounds. Using expression cloning in Xenopus oocytes coexpressing the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, the beta-2 adrenergic receptor (beta(2)AR), and fractions of a zebrafish cDNA library, we isolated a cDNA clone encoding receptor activity-modifying protein (RAMP)-like triterpene glycoside receptor (RL-TGR), a novel coreceptor involved in signaling in response to triterpene glycosides. This coreceptor appears to be structurally and functionally related to RAMPs, a family of coreceptors that physically associate with and modify the activity of G protein-coupled receptors (GPCRs). In membranes from formoside-responsive oocytes, RL-TGR was immunoprecipitated in an apparent complex with beta(2)AR. In HEK293 cells, coexpression of beta(2)AR induced the trafficking of RL-TGR from the cytoplasm to the plasma membrane. These results suggest that RL-TGR in the predatory fish physically associates with the beta(2)AR or another, more physiologically relevant GPCR and modifies its pharmacology to respond to triterpene glycosides found in sponges that serve as a potential food source for the fish. RL-TGR forms a coreceptor that responds to a chemical defense compound in the marine environment, and its discovery might lead the way to the identification of other receptors that mediate chemical defense signaling.


Assuntos
Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , DNA Complementar/química , DNA Complementar/genética , Feminino , Biblioteca Gênica , Glicosídeos/farmacologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Oócitos/metabolismo , Oócitos/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Xenopus laevis , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
J Microencapsul ; 30(1): 28-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22657751

RESUMO

Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis associated with a high mortality rate. Capsular polysaccharides (CPSs) are a major virulence factor and form the basis for serogroup designation and protective vaccines. The current polysaccharide meningococcal vaccines are available but are very expensive and require chemical conjugation. Here, we report a novel meningococcal vaccine formulation consisting of meningococcal CPS polymers encapsulated in albumin-based biodegradable microparticles that slowly release antigen and induce robust innate immune responses. Vaccines that elicit innate immunity are reported to have enhanced and protective adaptive immune responses. In this study, the meningococcal CPS-loaded microparticles, but not the empty microparticles, induced the release of IL-8, TNF-α and IL-1ß, enhanced phagocytic capacity and induced robust autophagy in macrophages. The novel meningococcal vaccine microparticles are robustly taken up by macrophages and elicit strong innate immune responses that enhance antigen presentation which is a prerequisite for inducing adaptive immunity.


Assuntos
Imunidade Inata , Vacinas Meningocócicas/química , Microesferas , Animais , Autofagia , Linhagem Celular , Humanos , Vacinas Meningocócicas/imunologia , Camundongos , Microscopia Eletrônica de Varredura
17.
Biophys Rep (N Y) ; 3(2): 100108, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37351179

RESUMO

In this paper we present a transistor circuit model for cystic fibrosis transmembrane conductance regulator (CFTR) that seeks to map the functional form of CFTR both in wild type and mutants. The circuit architecture is configured so that the function, and as much as possible the form, faithfully represents what is known about CFTR from cryo-electron microscopy and molecular dynamics. The model is a mixed analog-digital topology with an AND gate receiving the input from two separate ATP-nucleotide-binding domain binding events. The analog portion of the circuit takes the output from the AND gate as its input. The input to the circuit model and its noise characteristics are extracted from single-channel patch-clamp experiments. The chloride current predicted by the model is then compared with single-channel patch-clamp recordings for wild-type CFTR. We also consider the patch-clamp recordings from CFTR with a G551D point mutation, a clinically relevant mutant that is responsive to therapeutic management. Our circuit model approach enables bioengineering approaches to CFTR and allows biophysicists to use efficient circuit simulation tools to analyze its behavior.

18.
WIREs Mech Dis ; 15(6): e1625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37544654

RESUMO

Cystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi-species bacterial communities, called "infection microbiomes," that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi-scale modeling framework, known as template-and-anchor modeling, that allows the gradual integration of refined sub-models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases. This article is categorized under: Congenital Diseases > Computational Models.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/complicações , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pulmão/metabolismo , Progressão da Doença , Modelos Teóricos
19.
Pflugers Arch ; 463(3): 405-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160394

RESUMO

Previous studies suggested that four transmembrane domains 5, 6, 11, 12 make the greatest contribution to forming the pore of the CFTR chloride channel. We used excised, inside-out patches from oocytes expressing CFTR with alanine-scanning mutagenesis in amino acids in TM6 and TM12 to probe CFTR pore structure with four blockers: glibenclamide (Glyb), glipizide (Glip), tolbutamide (Tolb), and Meglitinide. Glyb and Glip blocked wildtype (WT)-CFTR in a voltage-, time-, and concentration-dependent manner. At V (M) = -120 mV with symmetrical 150 mM Cl(-) solution, fractional block of WT-CFTR by 50 µM Glyb and 200 µM Glip was 0.64 ± 0.03 (n = 7) and 0.48 ± 0.02 (n = 7), respectively. The major effects on block by Glyb and Glip were found with mutations at F337, S341, I344, M348, and V350 of TM6. Under similar conditions, fractional block of WT-CFTR by 300 µM Tolb was 0.40 ± 0.04. Unlike Glyb, Glip, and Meglitinide, block by Tolb lacked time-dependence (n = 7). We then tested the effects of alanine mutations in TM12 on block by Glyb and Glip; the major effects were found at N1138, T1142, V1147, N1148, S1149, S1150, I1151, and D1152. From these experiments, we infer that amino acids F337, S341, I344, M348, and V350 of TM6 face the pore when the channel is in the open state, while the amino acids of TM12 make less important contributions to pore function. These data also suggest that the region between F337 and S341 forms the narrow part of the CFTR pore.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Alanina/genética , Sequência de Aminoácidos , Animais , Benzamidas/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Glipizida/farmacologia , Glibureto/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Mutagênese , Oócitos , Técnicas de Patch-Clamp , Tolbutamida/farmacologia , Xenopus
20.
Adv Healthc Mater ; 11(10): e2102539, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34957709

RESUMO

Lung infections caused by Gram-positive Staphylococcus aureus (S. aureus) and coinfections caused by S. aureus and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) are challenging to treat, especially with the rise in the number of antibiotic-resistant strains of these pathogens. Bacteriophage (phage) are bacteria-specific viruses that can infect and lyse bacteria, providing a potentially effective therapy for bacterial infections. However, the development of bacteriophage therapy is impeded by limited suitable biomaterials that can facilitate effective delivery of phage to the lung. Here, the ability of porous microparticles engineered from poly(lactic-co-glycolic acid) (PLGA), a biodegradable polyester, to effectively deliver phage to the lung, is demonstrated. The phage-loaded microparticles (phage-MPs) display potent antimicrobial efficacy against various strains of S. aureus in vitro and in vivo, and arrest the growth of a clinical isolate of S. aureus in the presence of sputum supernatant obtained from cystic fibrosis patients. Moreover, phage-MPs efficiently mitigate in vitro cocultures of S. aureus and P. aeruginosa and display excellent cytocompatibility with human lung epithelial cells. Therefore, phage-MPs represents a promising therapy to treat bacterial lung infection.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Antibacterianos , Técnicas de Cocultura , Glicóis , Humanos , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pseudomonas aeruginosa , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa