Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(41): 49331-49339, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609838

RESUMO

Grid-scale energy storage is increasingly needed as wind, solar, and other intermittent renewable energy sources become more prevalent. Redox flow batteries (RFBs) are well suited to this application because of the advantages in scalability and modularity over competing technologies. Commercial aqueous flow batteries often have low energy density, but nonaqueous RFBs can offer higher energy density. Nonaqueous RFBs have not been studied as extensively as aqueous RFBs, and the use of organic solvents and organic active materials in nonaqueous RFBs presents unique membrane separator challenges compared to aqueous systems. Specifically, organic active material cross-over, which degrades battery performance, may be affected by membrane/active material thermodynamic interactions in a fundamentally different way than ionic active material cross-over in aqueous RFB membranes. Hansen solubility parameters (HSPs) were used to quantify these interactions and explain differences in organic active material permeability properties. Probe molecules with a more unfavorable HSP-determined enthalpy of mixing with the membrane polymer exhibited lower permeability or cross-over properties. The HSP approach, which accounts for the uncharged polymer backbone and the charged side chain, revealed that interactions between the uncharged organic probe molecule and the hydrophobic polymer backbone were more important for determining permeability or cross-over properties than interactions between the probe molecule and the hydrophilic side chain. This result is significant for nonaqueous RFBs because it suggests a decoupling of ionic conduction expected to predominantly occur in charged polymer regions and cross-over of organic molecules via hydrophobic or uncharged polymer regions. Such decoupling is not expected in aqueous systems where active materials are often polar or ionic and both cross-over and conduction occur predominantly in charged polymer regions. For nonaqueous RFBs, or other membrane applications where selective organic molecule transport is important, HSP analysis can guide the co-design of the polymer separator materials and soluble organic molecules.

2.
Front Vet Sci ; 8: 744055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869720

RESUMO

The objective of this study was to determine sources of Shiga toxin-producing Escherichia coli O157 (STEC O157) infection among visitors to Farm X and develop public health recommendations. A case-control study was conducted. Case-patients were defined as the first ill child (aged <18 years) in the household with laboratory-confirmed STEC O157, or physician-diagnosed hemolytic uremic syndrome with laboratory confirmation by serology, who visited Farm X in the 10 days prior to illness. Controls were selected from Farm X visitors aged <18 years, without symptoms during the same time period as case-patients. Environment and animal fecal samples collected from Farm X were cultured; isolates from Farm X were compared with patient isolates using whole genome sequencing (WGS). Case-patients were more likely than controls to have sat on hay bales at the doe barn (adjusted odds ratio: 4.55; 95% confidence interval: 1.41-16.13). No handwashing stations were available; limited hand sanitizer was provided. Overall, 37% (29 of 78) of animal and environmental samples collected were positive for STEC; of these, 62% (18 of 29) yielded STEC O157 highly related by WGS to patient isolates. STEC O157 environmental contamination and fecal shedding by goats at Farm X was extensive. Farms should provide handwashing stations with soap, running water, and disposable towels. Access to animal areas, including animal pens and enclosures, should be limited for young children who are at risk for severe outcomes from STEC O157 infection. National recommendations should be adopted to reduce disease transmission.

3.
J Phys Chem Lett ; 9(3): 545-549, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29337570

RESUMO

Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa