Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 145(14): 7992-8000, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995316

RESUMO

Catalytic C-H borylation is an attractive method for the conversion of the most abundant hydrocarbon, methane (CH4), to a mild nucleophilic building block. However, existing CH4 borylation catalysts often suffer from low turnover numbers and conversions, which is hypothesized to result from inactive metal hydride agglomerates. Herein we report that the heterogenization of a bisphosphine molecular precatalyst, [(dmpe)Ir(cod)CH3], onto amorphous silica dramatically enhances its performance, yielding a catalyst that is 12-times more efficient than the current standard for CH4 borylation. The catalyst affords over 2000 turnovers at 150 °C in 16 h with a selectivity of 91.5% for mono- vs diborylation. Higher catalyst loadings improve yield and selectivity for the monoborylated product (H3CBpin) with 82.8% yield and >99% selectivity being achieved with 1255 turnovers. X-ray absorption and dynamic nuclear polarization-enhanced solid-state NMR spectroscopic studies identify the supported precatalyst as an IrI species, and indicate that upon completion of catalysis, multinuclear Ir polyhydrides are not formed. This is consistent with the hypothesis that immobilization of the organometallic Ir species on a surface prevents bimolecular decomposition pathways. Immobilization of the homogeneous IrI fragment onto amorphous silica represents a unique and simple strategy to improve the TON and longevity of a CH4 borylation catalyst.

2.
Proc Natl Acad Sci U S A ; 117(18): 10003-10014, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32300008

RESUMO

Transcription factors (TFs) enact precise regulation of gene expression through site-specific, genome-wide binding. Common methods for TF-occupancy profiling, such as chromatin immunoprecipitation, are limited by requirement of TF-specific antibodies and provide only end-point snapshots of TF binding. Alternatively, TF-tagging techniques, in which a TF is fused to a DNA-modifying enzyme that marks TF-binding events across the genome as they occur, do not require TF-specific antibodies and offer the potential for unique applications, such as recording of TF occupancy over time and cell type specificity through conditional expression of the TF-enzyme fusion. Here, we create a viral toolkit for one such method, calling cards, and demonstrate that these reagents can be delivered to the live mouse brain and used to report TF occupancy. Further, we establish a Cre-dependent calling cards system and, in proof-of-principle experiments, show utility in defining cell type-specific TF profiles and recording and integrating TF-binding events across time. This versatile approach will enable unique studies of TF-mediated gene regulation in live animal models.


Assuntos
Cromatina/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Epigenômica/métodos , Fatores de Transcrição/genética , Algoritmos , Animais , Anticorpos/genética , Sítios de Ligação/genética , Cromatina/virologia , Dependovirus/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Integrases/genética , Camundongos , Distribuição Tecidual/genética
3.
Hum Mol Genet ; 29(9): 1498-1519, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32313931

RESUMO

Gtf2ird1 and Gtf2i are two transcription factors (TFs) among the 28 genes deleted in Williams syndrome, and prior mouse models of each TF show behavioral phenotypes. Here we identify their genomic binding sites in the developing brain and test for additive effects of their mutation on transcription and behavior. GTF2IRD1 binding targets were enriched for transcriptional and chromatin regulators and mediators of ubiquitination. GTF2I targets were enriched for signal transduction proteins, including regulators of phosphorylation and WNT. Both TFs are highly enriched at promoters, strongly overlap CTCF binding and topological associating domain boundaries and moderately overlap each other, suggesting epistatic effects. Shared TF targets are enriched for reactive oxygen species-responsive genes, synaptic proteins and transcription regulators such as chromatin modifiers, including a significant number of highly constrained genes and known ASD genes. We next used single and double mutants to test whether mutating both TFs will modify transcriptional and behavioral phenotypes of single Gtf2ird1 mutants, though with the caveat that our Gtf2ird1 mutants, like others previously reported, do produce low levels of a truncated protein product. Despite little difference in DNA binding and transcriptome-wide expression, homozygous Gtf2ird1 mutation caused balance, marble burying and conditioned fear phenotypes. However, mutating Gtf2i in addition to Gtf2ird1 did not further modify transcriptomic or most behavioral phenotypes, suggesting Gtf2ird1 mutation alone was sufficient for the observed phenotypes.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas Musculares/genética , Transativadores/genética , Fatores de Transcrição TFII/genética , Síndrome de Williams/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Transcrição Gênica/genética , Síndrome de Williams/patologia
4.
Angew Chem Int Ed Engl ; 61(12): e202113909, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-34845811

RESUMO

The efficient delivery of reactive and toxic gaseous reagents to organic reactions was studied using metal-organic frameworks (MOFs). The simultaneous cargo vehicle and catalytic capabilities of several MOFs were probed for the first time using the examples of aromatization, aminocarbonylation, and carbonylative Suzuki-Miyaura coupling reactions. These reactions highlight that MOFs can serve a dual role as a gas cargo vehicle and a catalyst, leading to product formation with yields similar to reactions employing pure gases. Furthermore, the MOFs can be recycled without sacrificing product yield, while simultaneously maintaining crystallinity. The reported findings were supported crystallographically and spectroscopically (e.g., diffuse reflectance infrared Fourier transform spectroscopy), foreshadowing a pathway for the development of multifunctional MOF-based reagent-catalyst cargo vessels for reactive gas reagents as an attractive alternative to the use of toxic pure gases or gas generators.

5.
Hum Mol Genet ; 28(20): 3443-3465, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31418010

RESUMO

Williams syndrome (WS) is a neurodevelopmental disorder caused by a 1.5-1.8 Mbp deletion on chromosome 7q11.23, affecting the copy number of 26-28 genes. Phenotypes of WS include cardiovascular problems, craniofacial dysmorphology, deficits in visual-spatial cognition and a characteristic hypersocial personality. There are still no genes in the region that have been consistently linked to the cognitive and behavioral phenotypes, although human studies and mouse models have led to the current hypothesis that the general transcription factor 2 I family of genes, GTF2I and GTF2IRD1, are responsible. Here we test the hypothesis that these two transcription factors are sufficient to reproduce the phenotypes that are caused by deletion of the WS critical region (WSCR). We compare a new mouse model with loss of function mutations in both Gtf2i and Gtf2ird1 to an established mouse model lacking the complete WSCR. We show that the complete deletion (CD) model has deficits across several behavioral domains including social communication, motor functioning and conditioned fear that are not explained by loss of function mutations in Gtf2i and Gtf2ird1. Furthermore, transcriptome profiling of the hippocampus shows changes in synaptic genes in the CD model that are not seen in the double mutants. Thus, we have thoroughly defined a set of molecular and behavioral consequences of complete WSCR deletion and shown that genes or combinations of genes beyond Gtf2i and Gtf2ird1 are necessary to produce these phenotypic effects.


Assuntos
Proteínas Musculares/genética , Mutação/genética , Transativadores/genética , Fatores de Transcrição TFII/genética , Síndrome de Williams/genética , Síndrome de Williams/patologia , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Fenótipo , Vocalização Animal/fisiologia
6.
Clin Endocrinol (Oxf) ; 94(2): 242-249, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32949016

RESUMO

BACKGROUND: The optimal management of craniopharyngiomas remains controversial. OBJECTIVES: To examine temporal trends in the management of craniopharyngioma with a focus on endocrine outcomes. METHODS: This was a cross-sectional, multicentre study. Patients treated between 1951 and 2015 were identified and divided into four quartiles. Demographics, presentation, treatment and outcomes were collected. RESULTS: In total, 142 patients with childhood-onset craniopharyngioma (48/142; 34%) and adult-onset disease (94/142; 66%) were included. The median follow-up was 15 years (IQR 5-23 years). Across quartiles, there was a significant trend towards using transsphenoidal surgery (P < .0001). The overall use of radiotherapy was not different among the four quartiles (P = .33). At the latest clinical review, the incidence of GH, ACTH, gonadotrophin deficiencies and anterior panhypopituitarism fell significantly across the duration of the study. Anterior panhypopituitarism was not affected by treatment modality (surgery vs surgery and radiotherapy) (P = .23). There was no difference in the incidence of high BMI (≥25 kg/m2 ) among the four quartiles (P = .14). BMI was higher in patients who treated with surgery and radiotherapy than those treated with surgery only (P = .006). Tumour regrowth occurred in 51 patients (51/142; 36%) with no difference in regrowth among quartiles over the time course of the study (P = .15). CONCLUSION: We demonstrate a significant reduction in panhypopituitarism in craniopharyngioma patients over time, most likely because of a trend towards more transsphenoidal surgery. However, long-term endocrine sequelae remain common and lifelong follow-up is required.


Assuntos
Craniofaringioma , Hipopituitarismo , Neoplasias Hipofisárias , Adulto , Criança , Craniofaringioma/radioterapia , Craniofaringioma/cirurgia , Estudos Transversais , Seguimentos , Humanos , Hipopituitarismo/etiologia , Neoplasias Hipofisárias/cirurgia , Estudos Retrospectivos
7.
Phys Chem Chem Phys ; 22(20): 11174-11196, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32393932

RESUMO

High throughput experimentation in heterogeneous catalysis provides an efficient solution to the generation of large datasets under reproducible conditions. Knowledge extraction from these datasets has mostly been performed using statistical methods, targeting the optimization of catalyst formulations. The combination of advanced machine learning methodologies with high-throughput experimentation has enormous potential to accelerate the predictive discovery of novel catalyst formulations that do not exist with current statistical design of experiments. This perspective describes selective examples ranging from statistical design of experiments for catalyst synthesis to genetic algorithms applied to catalyst optimization, and finally random forest machine learning using experimental data for the discovery of novel catalysts. Lastly, this perspective also provides an outlook on advanced machine learning methodologies as applied to experimental data for materials discovery.

8.
J Neurodev Disord ; 16(1): 16, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632525

RESUMO

BACKGROUND: Mucopolysaccharidosis (MPS) IIIB, also known as Sanfilippo Syndrome B, is a devastating childhood disease. Unfortunately, there are currently no available treatments for MPS IIIB patients. Yet, animal models of lysosomal storage diseases have been valuable tools in identifying promising avenues of treatment. Enzyme replacement therapy, gene therapy, and bone marrow transplant have all shown efficacy in the MPS IIIB model systems. A ubiquitous finding across rodent models of lysosomal storage diseases is that the best treatment outcomes resulted from intervention prior to symptom onset. Therefore, the aim of the current study was to identify early markers of disease in the MPS IIIB mouse model as well as examine clinically-relevant behavioral domains not yet explored in this model. METHODS: Using the MPS IIIB mouse model, we explored early developmental trajectories of communication and gait, and later social behavior, fear-related startle and conditioning, and visual capabilities. In addition, we examined brain structure and function via magnetic resonance imaging and diffusion tensor imaging. RESULTS: We observed reduced maternal isolation-induced ultrasonic vocalizations in MPS IIIB mice relative to controls, as well as disruption in a number of the spectrotemporal features. MPS IIIB also exhibited disrupted thermoregulation during the first two postnatal weeks without any differences in body weight. The developmental trajectories of gait were largely normal. In early adulthood, we observed intact visual acuity and sociability yet a more submissive phenotype, increased aggressive behavior, and decreased social sniffing relative to controls. MPS IIIB mice showed greater inhibition of startle in response to a pretone with a decrease in overall startle response and reduced cued fear memory. MPS IIIB also weighed significantly more than controls throughout adulthood and showed larger whole brain volumes and normalized regional volumes with intact tissue integrity as measured with magnetic resonance and diffusion tensor imaging, respectively. CONCLUSIONS: Together, these results indicate disease markers are present as early as the first two weeks postnatal in this model. Further, this model recapitulates social, sensory and fear-related clinical features. Our study using a mouse model of MPS IIIB provides essential baseline information that will be useful in future evaluations of potential treatments.


Assuntos
Mucopolissacaridose III , Humanos , Animais , Adulto , Criança , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Imagem de Tensor de Difusão , Encéfalo , Modelos Animais de Doenças , Resultado do Tratamento
9.
Am Surg ; 89(7): 3248-3250, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36797833

RESUMO

The American Society of Breast Surgeons recommends sending separate nipple margins (NMs) when performing nipple-sparing mastectomies (NSMs). However, the definition of a positive NM is vague. We evaluated NM management and outcomes in breast cancer patients undergoing NSM from 2010 to 2021 at our community-based hospital system through a retrospective review and descriptive analysis. A total of 619 patients (1086 NSM) were included. Median invasive tumor size was 1.5cm and median follow-up 30 months. Fourteen therapeutic NSMs had tumor within the NMs. Nine were positive using the definition "any tumor within the separate NM," and nipple-areolar complex (NAC) excised. Two were negative when positive was defined as "any tumor on ink," and were observed without recurrence. Our results suggest positive NMs warranting NAC excision could be interpreted as "any tumor on ink" and NSMs can be safely performed with low rates of positive NMs and recurrences in high-volume hospitals.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Mamoplastia , Humanos , Feminino , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Mastectomia/métodos , Carcinoma Intraductal não Infiltrante/cirurgia , Carcinoma Intraductal não Infiltrante/patologia , Mamilos/cirurgia , Mamilos/patologia , Estudos Retrospectivos , Margens de Excisão , Hospitais , Recidiva Local de Neoplasia/patologia , Mamoplastia/métodos
10.
Cell Rep Methods ; 3(6): 100504, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426756

RESUMO

Social motivation is critical to the development of typical social functioning. Social motivation, specifically one or more of its components (e.g., social reward seeking or social orienting), could be relevant for understanding phenotypes related to autism. We developed a social operant conditioning task to quantify effort to access a social partner and concurrent social orienting in mice. We established that mice will work for access to a social partner, identified sex differences, and observed high test-retest reliability. We then benchmarked the method with two test-case manipulations. Shank3B mutants exhibited reduced social orienting and failed to show social reward seeking. Oxytocin receptor antagonism decreased social motivation, consistent with its role in social reward circuitry. Overall, we believe that this method provides a valuable addition to the assessment of social phenotypes in rodent models of autism and the mapping of potentially sex-specific social motivation neural circuits.


Assuntos
Transtorno Autístico , Ocitocina , Feminino , Masculino , Camundongos , Animais , Motivação , Transtorno Autístico/genética , Comportamento Social , Reprodutibilidade dos Testes
11.
ACS Cent Sci ; 9(2): 266-276, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844483

RESUMO

We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.4%. Characterization of the best-performing catalysts reveal conversion to hexadiene to be due to the formation of large Cu nanoparticles, which is further supported by reaction mechanisms calculated with density functional theory (DFT). Our results demonstrate both the strengths and weaknesses of the HTE approach. As a strength, HTE excels at being able to find interesting and novel catalytic activity; any a priori theoretical approach would be hard-pressed to find success, as high-performing catalysts required highly specific operating conditions difficult to model theoretically, and initial simple single-atom models of the active site did not prove representative of the nanoparticle catalysts responsible for conversion to hexadiene. As a weakness, our results show how the HTE approach must be designed and monitored carefully to find success; in our initial campaign, only minor catalytic performances (up to 4.2% yield) were achieved, which were only improved following a complete overhaul of our HTE approach and questioning our initial assumptions.

12.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711815

RESUMO

Williams Syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams Syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1 , which encodes a transcription factor suggested to play a role in the behavioral profile of Williams Syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias, and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A 'Complete Deletion' mouse, heterozygously eliminating the syntenic Williams Syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1 , which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the Complete Deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams Syndrome Critical Region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.

13.
Genes Brain Behav ; 22(4): e12853, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370259

RESUMO

Williams syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1, which encodes a transcription factor suggested to play a role in the behavioral profile of Williams syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A "complete deletion" mouse, heterozygously eliminating the syntenic Williams syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1, which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the complete deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams syndrome critical region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.


Assuntos
Síndrome de Williams , Camundongos , Animais , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Transativadores/genética , Transativadores/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição/genética , Comportamento Social , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
14.
ACS Appl Mater Interfaces ; 15(46): 53498-53514, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37945527

RESUMO

The development of new methods of catalyst synthesis with the potential to generate active site structures orthogonal to those accessible by traditional protocols is of great importance for discovering new materials for addressing challenges in the evolving energy and chemical economy. In this work, the generality of oxidative grafting of organometallic and well-defined molecular metal precursors onto redox-active surfaces such as manganese dioxide (MnO2) and lithium manganese oxide (LiMn2O4) is investigated. Nine molecular metal precursors are explored, spanning groups 4-11 and each of the three periods of the transition metal series. The byproducts of the oxidative grafting reaction, a mixture of protodemetalation and ligand homocoupling for several organometallic precursors, was found to provide insights into the mechanism of the grafting reaction, suggesting oxidation of both the metal d-orbitals, as well as the metal-carbon σ-bonds, resulting in ejection of the ligand radical fragment. Analysis of the supported structures and oxidation state by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) suggests that several of the chemisorbed metal ions are intercalated into interstitial vacancies of the surface structure while other complexes form intact molecular fragments on the surface. Proof of concept for the use of this metalation protocol to generate diverse, metal-dependent catalytic performance is demonstrated by the application of these materials in the conversion of cyclohexane to K/A oil (cyclohexanol and cyclohexanone) with tert-butyl hydroperoxide, as well as in the low-temperature (T ≤ 50 °C) oxidation of carbon monoxide to carbon dioxide.

15.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909558

RESUMO

Phenotypic heterogeneity is a common feature of monogenic neurodevelopmental disorders that can arise from differential severity of missense variants underlying disease, but how distinct alleles impact molecular mechanisms to drive variable disease presentation is not well understood. Here, we investigate missense mutations in the DNA methyltransferase DNMT3A associated with variable overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity in neurodevelopmental disease. We generate a DNMT3A P900L/+ mouse model mimicking a disease mutation with mild-to-moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. We show that the P900L mutation leads to disease-relevant overgrowth, obesity, and social deficits shared across DNMT3A disorder models, while the R878H mutation causes more extensive epigenomic disruption leading to differential dysregulation of enhancers elements. We identify distinct gene sets disrupted in each mutant which may contribute to mild or severe disease, and detect shared transcriptomic disruption that likely drives common phenotypes across affected individuals. Finally, we demonstrate that core gene dysregulation detected in DNMT3A mutant mice overlaps effects in other developmental disorder models, highlighting the importance of DNMT3A-deposited methylation in neurodevelopment. Together, these findings define central drivers of DNMT3A disorders and illustrate how variable disruption of transcriptional mechanisms can drive the spectrum of phenotypes in neurodevelopmental disease.

16.
Cell Rep ; 42(11): 113411, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952155

RESUMO

Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Epigenômica , Mutação/genética
17.
Psychopharmacology (Berl) ; 239(12): 3859-3873, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269379

RESUMO

RATIONALE: In utero opioid exposure is associated with lower weight and a neonatal opioid withdrawal syndrome (NOWS) at birth, along with longer-term adverse neurodevelopmental outcomes and mood disorders. While NOWS is sometimes treated with continued opioids, clinical studies have not addressed if long-term neurobehavioral outcomes are worsened with continued postnatal exposure to opioids. In addition, pre-clinical studies comparing in utero only opioid exposure to continued post-natal opioid administration for withdrawal mitigation are lacking. OBJECTIVES: Here, we sought to understand the impact of continued postnatal opioid exposure on long term behavioral consequences. METHODS: We implemented a rodent perinatal opioid exposure model of oxycodone (Oxy) exposure that included Oxy exposure until birth (short Oxy) and continued postnatal opioid exposure (long Oxy) spanning gestation through birth and lactation. RESULTS: Short Oxy exposure was associated with a sex-specific increase in weight gain trajectory in adult male mice. Long Oxy exposure caused an increased weight gain trajectory in adult males and alterations in nociceptive processing in females. Importantly, there was no evidence of long-term social behavioral deficits, anxiety, hyperactivity, or memory deficits following short or long Oxy exposure. CONCLUSIONS: Our findings suggest that offspring with prolonged opioid exposure experienced some long-term sequelae compared to pups with opioid cessation at birth. These results highlight the potential long-term consequences of opioid administration as a mitigation strategy for clinical NOWS symptomology and suggest alternatives should be explored.


Assuntos
Trajetória do Peso do Corpo , Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Gravidez , Humanos , Feminino , Recém-Nascido , Masculino , Camundongos , Animais , Oxicodona , Analgésicos Opioides , Síndrome de Abstinência Neonatal/tratamento farmacológico , Síndrome de Abstinência Neonatal/etiologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Percepção , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
18.
Front Behav Neurosci ; 15: 615798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692675

RESUMO

Nationwide, opioid misuse among pregnant women has risen four-fold from 1999 to 2014, with commensurate increase in neonates hospitalized for neonatal abstinence syndrome (NAS). NAS occurs when a fetus exposed to opioids in utero goes into rapid withdrawal after birth. NAS treatment via continued post-natal opioid exposure has been suggested to worsen neurodevelopmental outcomes. We developed a novel model to characterize the impact of in utero and prolonged post-natal oxycodone (Oxy) exposure on early behavior and development. Via subcutaneous pump implanted before breeding, C57BL/6J dams were infused with Oxy at 10 mg/kg/day from conception through pup-weaning. At birth, in utero oxy-exposed pups were either cross-fostered (paired with non-Oxy exposed dams) to model opioid abstinence (in utero Oxy) or reared by their biological dams still receiving Oxy to model continued post-natal opioid exposure (prolonged Oxy). Offspring from vehicle-exposed dams served as cross-fostered (in utero Veh) or biologically reared (prolonged Veh) controls. In utero Oxy exposure resulted in sex-dependent weight reductions and altered spectrotemporal features of isolation-induced ultrasonic vocalization (USV). Meanwhile, prolonged Oxy pups exhibited reduced weight and sex-differential delays in righting reflex. Specifically, prolonged Oxy female offspring exhibited increased latency to righting. Prolonged Oxy pups also showed decreases in number of USV calls and changes to spectrotemporal USV features. Overall, ontogenetic Oxy exposure was associated with impaired attainment of gross and sensorimotor milestones, as well as alterations in communication and affective behaviors, indicating a need for therapeutic interventions. The model developed here will enable studies of withdrawal physiology and opioid-mediated mechanisms underlying these neurodevelopmental deficits.

19.
Neuron ; 109(23): 3775-3792.e14, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614421

RESUMO

Human genetics have defined a new neurodevelopmental syndrome caused by loss-of-function mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. However, how MYT1L mutation causes intellectual disability, autism, ADHD, obesity, and brain anomalies is unknown. Here, we developed a Myt1l haploinsufficient mouse model that develops obesity, white-matter thinning, and microcephaly, mimicking common clinical phenotypes. During brain development we discovered disrupted gene expression, mediated in part by loss of Myt1l gene-target activation, and identified precocious neuronal differentiation as the mechanism for microcephaly. In contrast, in adults we discovered that mutation results in failure of transcriptional and chromatin maturation, echoed in disruptions in baseline physiological properties of neurons. Myt1l haploinsufficiency also results in behavioral anomalies, including hyperactivity, muscle weakness, and social alterations, with more severe phenotypes in males. Overall, our findings provide insight into the mechanistic underpinnings of this disorder and enable future preclinical studies.


Assuntos
Deficiência Intelectual , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Animais , Encéfalo/metabolismo , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Fenótipo , Fatores de Transcrição/metabolismo
20.
Materials (Basel) ; 13(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316302

RESUMO

High throughput experimentation has the capability to generate massive, multidimensional datasets, allowing for the discovery of novel catalytic materials. Here, we show the synthesis and catalytic screening of over 100 unique Ru-Metal-K based bimetallic catalysts for low temperature ammonia decomposition, with a Ru loading between 1-3 wt% Ru and a fixed K loading of 12 wt% K, supported on γ-Al2O3. Bimetallic catalysts containing Sc, Sr, Hf, Y, Mg, Zr, Ta, or Ca in addition to Ru were found to have excellent ammonia decomposition activity when compared to state-of-the-art catalysts in literature. Furthermore, the Ru content could be reduced to 1 wt% Ru, a factor of four decrease, with the addition of Sr, Y, Zr, or Hf, where these secondary metals have not been previously explored for ammonia decomposition. The bimetallic interactions between Ru and the secondary metal, specifically RuSrK and RuFeK, were investigated in detail to elucidate the reaction kinetics and surface properties of both high and low performing catalysts. The RuSrK catalyst had a turnover frequency of 1.78 s-1, while RuFeK had a turnover frequency of only 0.28 s-1 under identical operating conditions. Based on their apparent activation energies and number of surface sites, the RuSrK had a factor of two lower activation energy than the RuFeK, while also possessing an equivalent number of surface sites, which suggests that the Sr promotes ammonia decomposition in the presence of Ru by modifying the active sites of Ru.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa