Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39345378

RESUMO

The Genome in a Bottle Consortium (GIAB), hosted by the National Institute of Standards and Technology (NIST), is developing new matched tumor-normal samples, the first to be explicitly consented for public dissemination of genomic data and cell lines. Here, we describe a comprehensive genomic dataset from the first individual, HG008, including DNA from an adherent, epithelial-like pancreatic ductal adenocarcinoma (PDAC) tumor cell line and matched normal cells from duodenal and pancreatic tissues. Data for the tumor-normal matched samples comes from thirteen distinct state-of-the-art whole genome measurement technologies, including high depth short and long-read bulk whole genome sequencing (WGS), single cell WGS, and Hi-C, and karyotyping. These data will be used by the GIAB Consortium to develop matched tumor-normal benchmarks for somatic variant detection. We expect these data to facilitate innovation for whole genome measurement technologies, de novo assembly of tumor and normal genomes, and bioinformatic tools to identify small and structural somatic mutations. This first-of-its-kind broadly consented open-access resource will facilitate further understanding of sequencing methods used for cancer biology.

2.
Biochim Biophys Acta ; 1818(5): 1427-34, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22305964

RESUMO

Cells of Synechocystis sp. PCC 6803 lacking photosystem I (PSI-less) and containing only photosystem II (PSII) or lacking both photosystems I and II (PSI/PSII-less) were compared to wild type (WT) cells to investigate the role of the photosystems in the architecture, structure, and number of thylakoid membranes. All cells were grown at 0.5µmol photons m(-2)s(-1). The lumen of the thylakoid membranes of the WT cells grown at this low light intensity were inflated compared to cells grown at higher light intensity. Tubular as well as sheet-like thylakoid membranes were found in the PSI-less strain at all stages of development with organized regular arrays of phycobilisomes on the surface of the thylakoid membranes. Tubular structures were also found in the PSI/PSII-less strain, but these were smaller in diameter to those found in the PSI-less strain with what appeared to be a different internal structure and were less common. There were fewer and smaller thylakoid membrane sheets in the double mutant and the phycobilisomes were found on the surface in more disordered arrays. These differences in thylakoid membrane structure most likely reflect the altered composition of photosynthetic particles and distribution of other integral membrane proteins and their interaction with the lipid bilayer. These results suggest an important role for the presence of PSII in the formation of the highly ordered tubular structures.


Assuntos
Complexo de Proteína do Fotossistema I , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura , Deleção de Genes , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Synechocystis/enzimologia , Synechocystis/genética , Tilacoides/enzimologia , Tilacoides/genética
3.
Biomaterials ; 35(25): 6716-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24840613

RESUMO

Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-ß and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation.


Assuntos
Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Análise em Microsséries , Nanofibras/química , Osteogênese/fisiologia , Polímeros/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Engenharia Tecidual/métodos , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Biomaterials ; 32(35): 9188-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21890197

RESUMO

Stem cell response to a library of scaffolds with varied 3D structures was investigated. Microarray screening revealed that each type of scaffold structure induced a unique gene expression signature in primary human bone marrow stromal cells (hBMSCs). Hierarchical cluster analysis showed that treatments sorted by scaffold structure and not by polymer chemistry suggesting that scaffold structure was more influential than scaffold composition. Further, the effects of scaffold structure on hBMSC function were mediated by cell shape. Of all the scaffolds tested, only scaffolds with a nanofibrous morphology were able to drive the hBMSCs down an osteogenic lineage in the absence of osteogenic supplements. Nanofiber scaffolds forced the hBMSCs to assume an elongated, highly branched morphology. This same morphology was seen in osteogenic controls where hBMSCs were cultured on flat polymer films in the presence of osteogenic supplements (OS). In contrast, hBMSCs cultured on flat polymer films in the absence of OS assumed a more rounded and less-branched morphology. These results indicate that cells are more sensitive to scaffold structure than previously appreciated and suggest that scaffold efficacy can be optimized by tailoring the scaffold structure to force cells into morphologies that direct them to differentiate down the desired lineage.


Assuntos
Linhagem da Célula , Forma Celular , Células-Tronco/citologia , Alicerces Teciduais/química , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/ultraestrutura , Contagem de Células , Células Cultivadas , DNA/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa