Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(18): 5334-5351, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409557

RESUMO

The expansive plains of West Siberia contain globally significant carbon stocks, with Earth's most extensive peatland complex overlying the world's largest-known hydrocarbon basin. Numerous terrestrial methane seeps have recently been discovered on this landscape, located along the floodplains of the Ob and Irtysh Rivers in hotspots covering more than 2500 km2 . We articulated three hypotheses to explain the origin and migration pathways of methane within these seeps: (H1) uplift of Cretaceous-aged methane from deep petroleum reservoirs along faults and fractures, (H2) release of Oligocene-aged methane capped or trapped by degrading permafrost, and (H3) horizontal migration of Holocene-aged methane from surrounding peatlands. We tested these hypotheses using a range of geochemical tools on gas and water samples extracted from seeps, peatlands, and aquifers across the 120,000 km2 study area. Seep-gas composition, radiocarbon age, and stable isotope fingerprints favor the peatland hypothesis of seep-methane origin (H3). Organic matter in raised bogs is the primary source of seep methane, but observed variability in stable isotope composition and concentration suggest production in two divergent biogeochemical settings that support distinct metabolic pathways of methanogenesis. Comparison of these parameters in raised bogs and seeps indicates that the first is bogs, via CO2 reduction methanogenesis. The second setting is likely groundwater, where dissolved organic carbon from bogs is degraded via chemolithotrophic acetogenesis followed by acetate fermentation methanogenesis. Our findings highlight the importance of methane lateral migration in West Siberia's bog-dominated landscapes via intimate groundwater connections. The same phenomenon could occur in similar landscapes across the boreal-taiga biome, thereby making groundwater-fed rivers and springs potent methane sources.


Assuntos
Hidrocarbonetos , Metano , Metano/metabolismo , Sibéria , Redes e Vias Metabólicas , Isótopos
2.
Ecol Appl ; 22(4): 1068-83, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22827119

RESUMO

Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Rena/fisiologia , Alberta , Animais , Colúmbia Britânica , Demografia , Monitoramento Ambiental , Atividades Humanas
3.
Nat Commun ; 10(1): 2804, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243288

RESUMO

Peatlands are globally significant sources of atmospheric methane (CH4). In the northern hemisphere, extensive geologic exploration activities have occurred to map petroleum deposits. In peatlands, these activities result in soil compaction and wetter conditions, changes that are likely to enhance CH4 emissions. To date, this effect has not been quantified. Here we map petroleum exploration disturbances on peatlands in Alberta, Canada, where peatlands and oil deposits are widespread. We then estimate induced CH4 emissions. By our calculations, at least 1900 km2 of peatland have been affected, increasing CH4 emissions by 4.4-5.1 kt CH4 yr-1 above undisturbed conditions. Not currently estimated in Canada's national reporting of greenhouse gas (GHG) emissions, inclusion would increase current emissions from land use, land use change and forestry by 7-8%. However, uncertainty remains large. Research further investigating effects of petroleum exploration on peatland GHG fluxes will allow appropriate consideration of these emissions in future peatland management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa