Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Waste Manag Res ; 40(11): 1618-1628, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35380070

RESUMO

Trees have morphological adaptations that allow methane (CH4) generated below ground to bypass oxidation in aerobic surface soils. This natural phenomenon however has not been measured in a landfill context where planted trees may alter the composition and magnitude of CH4 fluxes from the surface. To address this research gap, we measured tree stem and soil greenhouse gas (GHG) emissions (CH4 and CO2) from a closed UK landfill and comparable natural site, using an off-axis integrated cavity output spectroscopy analyser and flux chambers. Analyses showed average CH4 stem fluxes from the landfill and non-landfill sites were 31.8 ± 24.4 µg m-2 h-1 and -0.3 ± 0.2 µg m-2 h-1, respectively. The landfill site showed seasonal patterns in CH4 and CO2 stem emissions, but no significant patterns were observed in CH4 and CO2 fluxes at different stem heights or between tree species. Tree stem emissions accounted for 39% of the total CH4 surface flux (7% of the CO2); a previously unknown contribution that should be included in future carbon assessments.


Assuntos
Gases de Efeito Estufa , Metano , Carbono , Dióxido de Carbono/análise , Metano/análise , Solo , Árvores
2.
Lancet Oncol ; 19(5): 649-659, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650362

RESUMO

BACKGROUND: Activating enhancer of zeste homolog 2 (EZH2) mutations or aberrations of the switch/sucrose non-fermentable (SWI/SNF) complex (eg, mutations or deletions of the subunits INI1 or SMARCA4) can lead to aberrant histone methylation, oncogenic transformation, and a proliferative dependency on EZH2 activity. In this first-in-human study, we aimed to investigate the safety, clinical activity, pharmacokinetics, and pharmacodynamics of tazemetostat, a first-in-class selective inhibitor of EZH2. METHODS: We did an open-label, multicentre, dose-escalation, phase 1 study using a 3 + 3 design with planned cohort expansion at the two highest doses below the maximally tolerated dose. The study was done at two centres in France: Institut Gustave Roussy (Villejuif, Val de Marne) and Institut Bergonié (Bordeaux, Gironde). Eligible patients had relapsed or refractory B-cell non-Hodgkin lymphoma or an advanced solid tumour and were older than 18 years, with Eastern Cooperative Oncology Group performance status of 0 or 1, and adequate end-organ function. Tazemetostat was administered orally from 100 mg twice daily to 1600 mg twice daily in 28-day cycles. The primary endpoint was to establish the maximum tolerated dose or recommended phase 2 dose of tazemetostat, as determined by dose-limiting toxicities, laboratory values, and other safety or pharmacokinetic measures in cycle one according to local investigator assessment. Safety was assessed in patients who received at least one dose of tazemetostat; antitumour activity was assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01897571. The phase 1 part of the study is complete, and phase 2 is ongoing. FINDINGS: Between June 13, 2013, and Sept 21, 2016, 64 patients (21 with B-cell non-Hodgkin lymphoma, and 43 with advanced solid tumours) received doses of tazemetostat. The most common treatment-related adverse events, regardless of attribution, were asthenia (21 [33%] of 64 treatment-related events), anaemia (nine [14%]), anorexia (four [6%]), muscle spasms (nine [14%]), nausea (13 [20%]), and vomiting (six [9%]), usually grade 1 or 2 in severity. A single dose-limiting toxicity of grade 4 thrombocytopenia was identified at the highest dose of 1600 mg twice daily. No treatment-related deaths occurred; seven (11%) patients had non-treatment-related deaths (one at 200 mg twice daily, four at 400 mg twice daily, and two at 1600 mg twice daily). The recommended phase 2 dose was determined to be 800 mg twice daily. Durable objective responses, including complete responses, were observed in eight (38%) of 21 patients with B-cell non-Hodgkin lymphoma and two (5%) of 43 patients with solid tumours. INTERPRETATION: Tazemetostat showed a favourable safety profile and antitumour activity in patients with refractory B-cell non-Hodgkin lymphoma and advanced solid tumours, including epithelioid sarcoma. Further clinical investigation of tazemetostat monotherapy is ongoing in phase 2 studies in adults and a phase 1 study for children, which are currently enrolling patients who have B-cell non-Hodgkin lymphoma and INI1-negative or SMARCA4-negative tumours. FUNDING: Epizyme and Eisai.


Assuntos
Antineoplásicos/administração & dosagem , Benzamidas/administração & dosagem , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Linfoma de Células B/tratamento farmacológico , Piridonas/administração & dosagem , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Benzamidas/efeitos adversos , Benzamidas/farmacocinética , Compostos de Bifenilo , Relação Dose-Resposta a Droga , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Feminino , França , Humanos , Linfoma de Células B/enzimologia , Linfoma de Células B/patologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Morfolinas , Piridonas/efeitos adversos , Piridonas/farmacocinética , Fatores de Tempo , Resultado do Tratamento
4.
Invest New Drugs ; 35(1): 11-25, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27783255

RESUMO

Background The neddylation pathway conjugates NEDD8 to cullin-RING ligases and controls the proteasomal degradation of specific proteins involved in essential cell processes. Pevonedistat (MLN4924) is a selective small molecule targeting the NEDD8-activating enzyme (NAE) and inhibits an early step in neddylation, resulting in DNA re-replication, cell cycle arrest and death. We investigated the anti-tumor potential of pevonedistat in preclinical models of melanoma. Methods Melanoma cell lines and patient-derived tumor xenografts (PDTX) treated with pevonedistat were assessed for viability/apoptosis and tumor growth, respectively, to identify sensitive/resistant models. Gene expression microarray and gene set enrichment analyses were performed in cell lines to determine the expression profiles and pathways of sensitivity/resistance. Pharmacodynamic changes in treated-PDTX were also characterized. Results Pevonedistat effectively inhibited cell viability (IC50 < 0.3 µM) and induced apoptosis in a subset of melanoma cell lines. Sensitive and resistant cell lines exhibited distinct gene expression profiles; sensitive models were enriched for genes involved in DNA repair, replication and cell cycle regulation, while immune response and cell adhesion pathways were upregulated in resistant models. Pevonedistat also reduced tumor growth in melanoma cell line xenografts and PDTX with variable responses. An accumulation of pevonedistat-NEDD8 adduct and CDT1 was observed in sensitive tumors consistent with its mechanism of action. Conclusions This study provided preclinical evidence that NAE inhibition by pevonedistat has anti-tumor activity in melanoma and supports the clinical benefits observed in recent Phase 1 trials of this drug in melanoma patients. Further investigations are warranted to develop rational combinations and determine predictive biomarkers of pevonedistat.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Melanoma/tratamento farmacológico , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
5.
Nature ; 458(7239): 732-6, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19360080

RESUMO

The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin-proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways. Here we describe MLN4924, a potent and selective inhibitor of NAE. MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis. MLN4924 suppressed the growth of human tumour xenografts in mice at compound exposures that were well tolerated. Our data suggest that NAE inhibitors may hold promise for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Culina/metabolismo , Feminino , Humanos , Camundongos , Proteína NEDD8 , Inibidores de Proteassoma , Transplante Heterólogo , Ubiquitinas/metabolismo
6.
Nat Genet ; 37(11): 1264-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227996

RESUMO

The reduction of iron is an essential step in the transferrin (Tf) cycle, which is the dominant pathway for iron uptake by red blood cell precursors. A deficiency in iron acquisition by red blood cells leads to hypochromic, microcytic anemia. Using a positional cloning strategy, we identified a gene, six-transmembrane epithelial antigen of the prostate 3 (Steap3), responsible for the iron deficiency anemia in the mouse mutant nm1054. Steap3 is expressed highly in hematopoietic tissues, colocalizes with the Tf cycle endosome and facilitates Tf-bound iron uptake. Steap3 shares homology with F(420)H(2):NADP(+) oxidoreductases found in archaea and bacteria, as well as with the yeast FRE family of metalloreductases. Overexpression of Steap3 stimulates the reduction of iron, and mice lacking Steap3 are deficient in erythroid ferrireductase activity. Taken together, these findings indicate that Steap3 is an endosomal ferrireductase required for efficient Tf-dependent iron uptake in erythroid cells.


Assuntos
Anemia Ferropriva/metabolismo , Antígenos de Neoplasias/metabolismo , Eritrócitos/enzimologia , FMN Redutase/metabolismo , Ferro/metabolismo , Transferrina/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/genética , Western Blotting , Células Cultivadas , Endossomos , FMN Redutase/genética , Feminino , Marcação de Genes , Rim/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Oxirredutases , Retroviridae/genética , Homologia de Sequência de Aminoácidos , Frações Subcelulares
7.
J Invest Dermatol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084489

RESUMO

Hidradenitis suppurativa (HS) is a chronic inflammatory disease manifesting as painful dermal nodules, abscesses, and tunnels. Activation of the IL-1R/toll-like receptor pathway is strongly implicated in the pathogenesis of HS; thus, the role of a key signaling node, IRAK4, was investigated in a noninterventional study (NCT04440410) that enrolled 30 patients with HS. IRAK4 expression was evaluated in blood and lesional, perilesional, and nonlesional skin biopsies. PBMCs expressed IRAK4, with significantly higher levels in monocytes (P ≤ .0001). Ex vivo treatment of PBMCs with KT-474, a targeted degrader of IRAK4, robustly decreased IRAK4 in all immune cell types from healthy volunteers and patients with HS. Ex vivo treatment of toll-like receptor-stimulated healthy donor monocytes with KT-474 decreased IRAK4 protein levels and inhibited inflammatory cytokine production. In HS skin samples, IRAK4 protein levels were significantly higher in lesional than in nonlesional tissue (P ≤ .0001), and IRAK4-positive immune infiltrate increased with greater disease severity. Multiple inflammatory mediators were upregulated in HS lesional skin, correlating with IRAK4 overexpression. These data confirm the significance of the IL-1R/toll-like receptor pathway in the pathogenesis of HS and provide support for ongoing clinical studies evaluating KT-474 in the treatment of HS.

8.
J Med Chem ; 67(13): 10548-10566, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920289

RESUMO

Developing therapies for the activated B-cell like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL) remains an area of unmet medical need. A subset of ABC DLBCL tumors is driven by activating mutations in myeloid differentiation primary response protein 88 (MYD88), which lead to constitutive activation of interleukin-1 receptor associated kinase 4 (IRAK4) and cellular proliferation. IRAK4 signaling is driven by its catalytic and scaffolding functions, necessitating complete removal of this protein and its escape mechanisms for complete therapeutic suppression. Herein, we describe the identification and characterization of a dual-functioning molecule, KT-413 and show it efficiently degrades IRAK4 and the transcription factors Ikaros and Aiolos. KT-413 achieves concurrent degradation of these proteins by functioning as both a heterobifunctional degrader and a molecular glue. Based on the demonstrated activity and safety of KT-413 in preclinical studies, a phase 1 clinical trial in B-cell lymphomas, including MYD88 mutant ABC DLBCL, is currently underway.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Linfoma Difuso de Grandes Células B , Mutação , Fator 88 de Diferenciação Mieloide , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Humanos , Animais , Linhagem Celular Tumoral , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Camundongos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/metabolismo , Proteólise/efeitos dos fármacos , Relação Estrutura-Atividade
9.
J Med Chem ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151120

RESUMO

Interleukin-1 receptor associated kinase 4 (IRAK4) is an essential mediator of the IL-1R and TLR signaling pathways, both of which have been implicated in multiple autoimmune conditions. Hence, blocking the activity of IRAK4 represents an attractive approach for the treatment of autoimmune diseases. The activity of this serine/threonine kinase is dependent on its kinase and scaffolding activities; thus, degradation represents a potentially superior approach to inhibition. Herein, we detail the exploration of structure-activity relationships that ultimately led to the identification of KT-474, a potent, selective, and orally bioavailable heterobifunctional IRAK4 degrader. This represents the first heterobifunctional degrader evaluated in a nononcology indication and dosed to healthy human volunteers. This molecule successfully completed phase I studies in healthy adult volunteers and patients with atopic dermatitis or hidradenitis suppurativa. Phase II clinical trials in both of these indications have been initiated.

10.
Nat Med ; 29(12): 3127-3136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957373

RESUMO

Toll-like receptor-driven and interleukin-1 (IL-1) receptor-driven inflammation mediated by IL-1 receptor-associated kinase 4 (IRAK4) is involved in the pathophysiology of hidradenitis suppurativa (HS) and atopic dermatitis (AD). KT-474 (SAR444656), an IRAK4 degrader, was studied in a randomized, double-blind, placebo-controlled phase 1 trial where the primary objective was safety and tolerability. Secondary objectives included pharmacokinetics, pharmacodynamics and clinical activity in patients with moderate to severe HS and in patients with moderate to severe AD. KT-474 was administered as a single dose and then daily for 14 d in 105 healthy volunteers (HVs), followed by dosing for 28 d in an open-label cohort of 21 patients. Degradation of IRAK4 was observed in HV blood, with mean reductions after a single dose of ≥93% at 600-1,600 mg and after 14 daily doses of ≥95% at 50-200 mg. In patients, similar IRAK4 degradation was achieved in blood, and IRAK4 was normalized in skin lesions where it was overexpressed relative to HVs. Reduction of disease-relevant inflammatory biomarkers was demonstrated in the blood and skin of patients with HS and patients with AD and was associated with improvement in skin lesions and symptoms. There were no drug-related infections. These results, from what, to our knowledge, is the first published clinical trial using a heterobifunctional degrader, provide initial proof of concept for KT-474 in HS and AD to be further confirmed in larger trials. ClinicalTrials.gov identifier: NCT04772885 .


Assuntos
Dermatite Atópica , Hidradenite Supurativa , Humanos , Hidradenite Supurativa/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1 , Resultado do Tratamento , Pele/patologia , Método Duplo-Cego , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa