Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 119(3): 389-399, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-28307762

RESUMO

This study examined the effects of CO2 and light availability on sapling growth and foliar chemistry, and consequences for insect performance. Quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), and sugar maple (Acer saccharum Marsh.) were grown in controlled environment greenhouses under ambient or elevated CO2 (38.7 and 69.6 Pa), and low or high light availability (375 and 855 µmol m-2 s-1). Because CO2 and light are both required for carbon assimilation, the levels of these two resources are expected to have strong interactive effects on tree growth and secondary metabolism. Results from this study support that prediction, indicating that the relative effect of rising atmospheric CO2 concentrations on the growth and secondary metabolism of deciduous trees may be dependent on light environment. Trees in ambient CO2-low light environments had substantial levels of phytochemicals despite low growth rates; the concept of basal secondary metabolism is proposed to explain allocation to secondary metabolites under growth-limiting conditions. Differences between CO2 and light effects on the responses of growth and secondary metabolite levels suggest that relative allocation is not dependent solely on the amount of carbon assimilated. The relative growth rates and indices of feeding efficiency for gypsy moth (Lymantria dispar L.) larvae fed foliage from the experimental treatments showed no significant interactive effects of light and CO2, although some main effects and many host species interactions were significant. Gypsy moth performance was negatively correlated with CO2- and light-induced increases in the phenolic glycoside content of aspen foliage. Insects were not strongly affected, however, by treatment differences in the nutritional and secondary chemical components of birch and maple.

2.
Oecologia ; 94(1): 49-56, 1993 May.
Artigo em Inglês | MEDLINE | ID: mdl-28313857

RESUMO

We examined the photosynthetic acclimation of three tropical species of Miconia to canopy openings in a Costa Rican rainforest. The response of photosynthesis to canopy opening was very similar in Miconia affinis, M. gracilis, and M. nervosa, despite differences in growth form (trees and shrubs) and local distributions of plants (understory and gap). Four months after the canopy was opened by a treefall, photosynthetic capacity in all three species had approximately doubled from closed canopy levels. There were no obvious signs of high light damage after treefall but acclimation to the gap environment was not immediate. Two weeks after treefall, Amax, stomatal conductance, apprarent quantum efficiency, and dark respiration rates had not changed significantly from understory values. The production of new leaves appears to be an important component of light acclimation in these species. The only variables to differ significantly among species were stomatal conductance at Amax and the light level at which assimilation was saturated. M. affinis had a higher stomatal conductance which may reduce its water use efficiency in gap environments. Photosynthesis in the more shade-tolerant M. gracilis saturated at lower light levels than in the other two species. Individual plant light environments were assessed after treefall with canopy photography but they explained only a small fraction of plant variation in most measures of photosynthesis and growth. In conclusion, we speculate that species differences in local distribution and in light requirements for reproduction may be more strongly related to species differences in carbon allocation than in carbon assimilation.

3.
New Phytol ; 168(3): 623-36, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16313645

RESUMO

Concentrations of atmospheric CO(2) and tropospheric ozone (O(3)) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO(2) enrichment (FACE) technology, we exposed north-temperate forest communities to concentrations of CO(2) and O(3) predicted for the year 2050 for the first 7 yr of stand development. Site-specific allometric equations were applied to annual nondestructive growth measurements to estimate above- and below-ground biomass and NPP for each year of the experiment. Relative to the control, elevated CO(2) increased total biomass 25, 45 and 60% in the aspen, aspen-birch and aspen-maple communities, respectively. Tropospheric O(3) caused 23, 13 and 14% reductions in total biomass relative to the control in the respective communities. Combined fumigation resulted in total biomass response of -7.8, +8.4 and +24.3% relative to the control in the aspen, aspen-birch and aspen-sugar maple communities, respectively. These results indicate that exposure to even moderate levels of O(3) significantly reduce the capacity of NPP to respond to elevated CO(2) in some forests.


Assuntos
Acer/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Dióxido de Carbono/farmacologia , Ozônio/farmacologia , Populus/crescimento & desenvolvimento , Acer/efeitos dos fármacos , Betula/efeitos dos fármacos , Biomassa , Carbono/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Populus/efeitos dos fármacos , Madeira
4.
Funct Plant Biol ; 29(9): 1115-1120, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689563

RESUMO

N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition. We altered transpiration by manipulating relative humidity (RH) and atmospheric [CO2]. During a 7-d period, we grew potted cottonwood (Populus deltoides Bartr.) trees in humidified (76% RH) and non-humidified (43% RH) glasshouses ventilated with either CO2-enriched or non-enriched air (~1000 vs ~380µmol mol-1). We monitored effects of elevated humidity and/or CO2 on stomatal conductance, whole-plant transpiration, plant biomass gain, and N accumulation. To facilitate the latter, NO3- enriched in 15N (5 atom%) was added to all pots at the outset of the experiment. Transpiration and 15N accumulation decreased when either CO2 or humidity were elevated. The disparity between N accumulation and accelerated C gain in elevated CO2 led to a 19% decrease in shoot N concentration relative to ambient CO2. Across all treatments, 15N gain was positively correlated with root mass (P<0.0001), and a significant portion of the remaining variation (44%) was positively related to transpiration per unit root mass. At a given humidity, transpiration per unit leaf area was positively related to stomatal conductance. Thus, declines in plant N concentration and/or content under CO2 enrichment may be attributable in part to associated decreases in stomatal conductance and transpiration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa