Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Invertebr Pathol ; 188: 107716, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35031296

RESUMO

The toheroa (Paphies ventricosa) is endemic to Aotearoa (New Zealand). Following decades of overfishing in the 1900 s, commercial and recreational fishing of toheroa is now prohibited. For unknown reasons, protective measures in place for over 40 years have not ensured the recovery of toheroa populations. For the first time, a systematic pathology survey was undertaken to provide a baseline of toheroa health in remaining major populations. Using histopathology, parasites and pathologies in a range of tissues are assessed and quantified spatio-temporally. Particular focus is placed on intracellular microcolonies of bacteria (IMCs). Bayesian ordinal logistic regression is used to model IMC infection and several facets of toheroa health. Model outputs show condition to be the most important predictor of IMC intensity in toheroa tissues. The precarious state of many toheroa populations around Aotearoa should warrant greater attention from scientists, conservationists, and regulators. It is hoped that this study will provide some insight into the current health status of a treasured and iconic constituent of several expansive surf beaches in Aotearoa.


Assuntos
Bivalves , Aranhas , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , Pesqueiros , Nova Zelândia
2.
Dis Aquat Organ ; 146: 91-105, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617515

RESUMO

The toheroa Paphies ventricosa is a large Aotearoa New Zealand (ANZ) endemic surf clam of cultural importance to many Maori, the Indigenous people of ANZ. Extensive commercial and recreational harvesting in the 20th century dramatically reduced populations, leading to the collapse and closure of the fishery. Despite being protected for >40 yr, toheroa have inexplicably failed to recover. In 2017, intracellular microcolonies (IMCs) of bacteria were detected in 'sick' toheroa in northern ANZ. Numerous mass mortality events (MMEs) have recently been recorded in ANZ shellfish, with many events linked by the presence of IMCs resembling Rickettsia-like organisms (RLOs). While similar IMCs have been implicated in MMEs in surf clams elsewhere, the impact of these IMCs on the health or recovery of toheroa is unknown. A critical first step towards understanding the significance of a pathogen in a host population is pathogen identification and characterisation. To begin this process, we examined 16S rRNA gene sequences of the putative IMCs from 4 toheroa populations that showed 97% homology to Endozoicomonas spp. sequences held in GenBank. Phylogenetic analysis identified closely related Endozoicomonas strains from the North and South Island, ANZ, and in situ hybridization, using 16S rRNA gene probes, confirmed the presence of the sequenced IMC gene in the gill and digestive gland tissues of toheroa. Quantitative PCR revealed site-specific and seasonal abundance patterns of Endozoicomonas spp. in toheroa populations. Although implicated in disease outbreaks elsewhere, the role of Endozoicomonas spp. within the ANZ shellfish mortality landscape remains uncertain.


Assuntos
Bivalves , Rickettsia , Animais , Nova Zelândia , Filogenia , RNA Ribossômico 16S/genética
3.
Appl Environ Microbiol ; 82(12): 3572-81, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27060125

RESUMO

UNLABELLED: Chthonomonas calidirosea T49(T) is a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that the C. calidirosea genome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of four C. calidirosea isolates obtained from four separate geothermal fields in the Taupo Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation in C. calidirosea relative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of the C. calidirosea isolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms of C. calidirosea distribution. This dispersal and extinction mechanism is likely not limited to C. calidirosea but may shape the populations and genomes of many other low-abundance free-living taxa. IMPORTANCE: This study compares the genomic sequence variations and metabolisms of four strains of Chthonomonas calidirosea, a rare thermophilic bacterium from the phylum Armatimonadetes It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the four C. calidirosea strains were isolated. C. calidirosea was previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, the C. calidirosea genome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting that C. calidirosea genotypes are not primarily determined by adaptive evolution. Instead, the presence of C. calidirosea may be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa.


Assuntos
Bactérias/classificação , Bactérias/genética , Variação Genética , Genoma Bacteriano , Filogeografia , Biota , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Nova Zelândia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
4.
Int J Syst Evol Microbiol ; 65(12): 4479-4487, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26374291

RESUMO

An aerobic, thermophilic and cellulolytic bacterium, designated strain WKT50.2T, was isolated from geothermal soil at Waikite, New Zealand. Strain WKT50.2T grew at 53-76 °C and at pH 5.9-8.2. The DNA G+C content was 58.4 mol%. The major fatty acids were 12-methyl C18 : 0 and C18 : 0. Polar lipids were all linked to long-chain 1,2-diols, and comprised 2-acylalkyldiol-1-O-phosphoinositol (diolPI), 2-acylalkyldiol-1-O-phosphoacylmannoside (diolP-acylMan), 2-acylalkyldiol-1-O-phosphoinositol acylmannoside (diolPI-acylMan) and 2-acylalkyldiol-1-O-phosphoinositol mannoside (diolPI-Man). Strain WKT50.2T utilized a range of cellulosic substrates, alcohols and organic acids for growth, but was unable to utilize monosaccharides. Robust growth of WKT50.2T was observed on protein derivatives. WKT50.2T was sensitive to ampicillin, chloramphenicol, kanamycin, neomycin, polymyxin B, streptomycin and vancomycin. Metronidazole, lasalocid A and trimethoprim stimulated growth. Phylogenetic analysis of 16S rRNA gene sequences showed that WKT50.2T belonged to the class Thermomicrobia within the phylum Chloroflexi, and was most closely related to Thermorudis peleae KI4T (99.6% similarity). DNA-DNA hybridization between WKT50.2T and Thermorudis peleae DSM 27169T was 18.0%. Physiological and biochemical tests confirmed the phenotypic and genotypic differentiation of strain WKT50.2T from Thermorudis peleae KI4T and other members of the Thermomicrobia. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain WKT50.2T represents a novel species, for which the name Thermorudis pharmacophila sp. nov. is proposed, with the type strain WKT50.2T ( = DSM 26011T = ICMP 20042T). Emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus are also proposed, and include the description of a novel respiratory quinone, MK-8 2,3-epoxide (23%), in Thermomicrobium roseum.


Assuntos
Chloroflexi/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fontes Termais , Temperatura Alta , Dados de Sequência Molecular , Nova Zelândia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Appl Environ Microbiol ; 80(14): 4383-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814789

RESUMO

The ability to maintain a dual lifestyle of colonizing the ruminant gut and surviving in nonhost environments once shed is key to the success of Escherichia coli O157:H7 as a zoonotic pathogen. Both physical and biological conditions encountered by the bacteria are likely to change during the transition between host and nonhost environments. In this study, carbon starvation at suboptimal temperatures in nonhost environments was simulated by starving a New Zealand bovine E. coli O157:H7 isolate in phosphate-buffered saline at 4 and 15°C for 84 days. Recovery of starved cells on media with different nutrient availabilities was monitored under aerobic and anaerobic conditions. We found that the New Zealand bovine E. coli O157:H7 isolate was able to maintain membrane integrity and viability over 84 days and that the level of recovery depended on the nutrient level of the recovery medium as well as the starvation temperature. In addition, a significant difference in carbon utilization was observed between starved and nonstarved cells.


Assuntos
Carbono/metabolismo , Meios de Cultura/química , Escherichia coli O157/crescimento & desenvolvimento , Estresse Fisiológico , Animais , Bovinos/microbiologia , Análise por Conglomerados , Contagem de Colônia Microbiana , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Viabilidade Microbiana , Nova Zelândia , Temperatura
6.
PeerJ ; 12: e17597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974417

RESUMO

The huhu beetle (Prionoplus reticularis) is the largest endemic beetle found throughout Aotearoa New Zealand, and is characterised by feeding on wood during its larval stage. It has been hypothesised that its gut microbiome plays a fundamental role in the degradation of wood. To explore this idea we examined the fungal and bacterial community composition of huhu grubs' frass, using amplicon sequencing. Grubs were reared on an exclusive diet of either a predominantly cellulose source (cotton) or lignocellulose source (pine) for 4 months; subsequently a diet switch was performed and the grubs were grown for another 4 months. The fungal community of cellulose-reared huhu grubs was abundant in potential cellulose degraders, contrasting with the community of lignocellulose-reared grubs, which showed abundant potential soft rot fungi, yeasts, and hemicellulose and cellulose degraders. Cellulose-reared grubs showed a less diverse fungal community, however, diet switch from cellulose to lignocellulose resulted in a change in community composition that showed grubs were still capable of utilising this substrate. Conversely, diet seemed to have a limited influence on huhu grub gut bacterial communities.


Assuntos
Besouros , Microbioma Gastrointestinal , Lignina , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Lignina/metabolismo , Besouros/microbiologia , Celulose/metabolismo , Dieta , Nova Zelândia , Fungos/genética , Fungos/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo
7.
Nat Commun ; 15(1): 179, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167814

RESUMO

Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupo Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.


Assuntos
Microbiota , Nova Zelândia , RNA Ribossômico 16S/genética , Filogenia , Metagenoma
8.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37985695

RESUMO

Methylobacterium species are abundant colonizers of the phyllosphere due to the availability of methanol, a waste product of pectin metabolism during plant cell division. The phyllosphere is an extreme environment, with a landscape that is heterogeneous and continuously changing as the plant grows and is exposed to high levels of ultraviolet irradiation. Geographically, New Zealand (NZ) has been isolated for over a million years, has a biologically diverse flora, and is considered a biodiversity hotspot, with most native plants being endemic. We therefore hypothesize that the phyllosphere of NZ native plants harbor diverse groups of Methylobacterium species. Leaf imprinting using methanol-supplemented agar medium was used to isolate bacteria, and diversity was determined using ARDRA and 16S rRNA gene sequencing. Methylobacterium species were successfully isolated from the phyllosphere of 18 of the 20 native NZ plant species in this study, and six different species were identified: M. marchantiae, M. mesophilicum, M. adhaesivum, M. komagatae, M. extorquens, and M. phyllosphaerae. Other α, ß, and γ-Proteobacteria, Actinomycetes, Bacteroidetes, and Firmicutes were also isolated, highlighting the presence of other potentially novel methanol utilizers within this ecosystem. This study identified that Methylobacterium are abundant members of the NZ phyllosphere, with species diversity and composition dependent on plant species.


Assuntos
Methylobacterium , Methylobacterium/genética , Ecossistema , RNA Ribossômico 16S/genética , Metanol , Nova Zelândia , Plantas/microbiologia , Folhas de Planta/microbiologia
9.
Front Microbiol ; 14: 1253773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720161

RESUMO

Geothermal areas represent substantial point sources for greenhouse gas emissions such as methane. While it is known that methanotrophic microorganisms act as a biofilter, decreasing the efflux of methane in most soils to the atmosphere, the diversity and the extent to which methane is consumed by thermophilic microorganisms in geothermal ecosystems has not been widely explored. To determine the extent of biologically mediated methane oxidation at elevated temperatures, we set up 57 microcosms using soils from 14 Aotearoa-New Zealand geothermal fields and show that moderately thermophilic (>40°C) and thermophilic (>60°C) methane oxidation is common across the region. Methane oxidation was detected in 54% (n = 31) of the geothermal soil microcosms tested at temperatures up to 75°C (pH 1.5-8.1), with oxidation rates ranging from 0.5 to 17.4 µmol g-1 d-1 wet weight. The abundance of known aerobic methanotrophs (up to 60.7% Methylacidiphilum and 11.2% Methylothermus) and putative anaerobic methanotrophs (up to 76.7% Bathyarchaeota) provides some explanation for the rapid rates of methane oxidation observed in microcosms. However, not all methane oxidation was attributable to known taxa; in some methane-consuming microcosms we detected methanotroph taxa in conditions outside of their known temperature range for growth, and in other examples, we observed methane oxidation in the absence of known methanotrophs through 16S rRNA gene sequencing. Both of these observations suggest unidentified methane oxidizing microorganisms or undescribed methanotrophic syntrophic associations may also be present. Subsequent enrichment cultures from microcosms yielded communities not predicted by the original diversity studies and showed rates inconsistent with microcosms (≤24.5 µmol d-1), highlighting difficulties in culturing representative thermophilic methanotrophs. Finally, to determine the active methane oxidation processes, we attempted to elucidate metabolic pathways from two enrichment cultures actively oxidizing methane using metatranscriptomics. The most highly expressed genes in both enrichments (methane monooxygenases, methanol dehydrogenases and PqqA precursor peptides) were related to methanotrophs from Methylococcaceae, Methylocystaceae and Methylothermaceae. This is the first example of using metatranscriptomics to investigate methanotrophs from geothermal environments and gives insight into the metabolic pathways involved in thermophilic methanotrophy.

10.
Microbiol Resour Announc ; 12(2): e0107422, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36695581

RESUMO

Venenivibrio stagnispumantis strain CP.B2T is a thermophilic, chemolithoautotrophic bacterium from the family Hydrogenothermaceae (phylum Aquificota), isolated from Champagne Pool in the Waiotapu geothermal field, Aotearoa-New Zealand. The genome consists of 1.73 Mbp in 451 contigs with a 30.8 mol% G+C content.

11.
Front Microbiol ; 14: 1094311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020721

RESUMO

Microbial biogeography studies, in particular for geothermal-associated habitats, have focused on spatial patterns and/or individual sites, which have limited ability to describe the dynamics of ecosystem behaviour. Here, we report the first comprehensive temporal study of bacterial and archaeal communities from an extensive range of geothermal features in Aotearoa-New Zealand. One hundred and fifteen water column samples from 31 geothermal ecosystems were taken over a 34-month period to ascertain microbial community stability (control sites), community response to both natural and anthropogenic disturbances in the local environment (disturbed sites) and temporal variation in spring diversity across different pH values (pH 3, 5, 7, 9) all at a similar temperature of 60-70°C (pH sites). Identical methodologies were employed to measure microbial diversity via 16S rRNA gene amplicon sequencing, along with 44 physicochemical parameters from each feature, to ensure confidence in comparing samples across timeframes. Our results indicated temperature and associated groundwater physicochemistry were the most likely parameters to vary stochastically in these geothermal features, with community abundances rather than composition more readily affected by a changing environment. However, variation in pH (pH ±1) had a more significant effect on community structure than temperature (±20°C), with alpha diversity failing to adequately measure temporal microbial disparity in geothermal features outside of circumneutral conditions. While a substantial physicochemical disturbance was required to shift community structures at the phylum level, geothermal ecosystems were resilient at this broad taxonomic rank and returned to a pre-disturbed state if environmental conditions re-established. These findings highlight the diverse controls between different microbial communities within the same habitat-type, expanding our understanding of temporal dynamics in extreme ecosystems.

12.
Environ Microbiol ; 14(12): 3069-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22497633

RESUMO

In 1998, a cultivation-independent survey of the microbial community in Obsidian Pool, Yellowstone National Park, detected 12 new phyla within the Domain Bacteria. These were dubbed 'candidate divisions' OP1 to OP12. Since that time the OP10 candidate division has been commonly detected in various environments, usually as part of the rare biosphere, but occasionally as a predominant community component. Based on 16S rRNA gene phylogeny, OP10 comprises at least 12 class-level subdivisions. However, despite this broad ecological and evolutionary diversity, all OP10 bacteria have eluded cultivation until recently. In 2011, two reference species of OP10 were taxonomically validated, removing the phylum from its 'candidate' status. Construction of a highly resolved phylogeny based on 29 universally conserved genes verifies its standing as a unique bacterial phylum. In the following paper we summarize what is known and what is suspected about the newest described bacterial phylum, the Armatimonadetes.


Assuntos
Bactérias Anaeróbias/classificação , Filogenia , RNA Ribossômico 16S/isolamento & purificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/história , Genes Bacterianos/genética , História do Século XX , Temperatura Alta , Hidrobiologia/história , Análise de Sequência de DNA , Especificidade da Espécie , Microbiologia da Água , Wyoming
13.
Curr Res Insect Sci ; 2: 100046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683955

RESUMO

Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.

14.
Front Microbiol ; 13: 836943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591982

RESUMO

Mt. Erebus, Antarctica, is the world's southernmost active volcano and is unique in its isolation from other major active volcanic systems and its distinctive geothermal systems. Using 16S rRNA gene amplicon sequencing and physicochemical analyses, we compared samples collected at two contrasting high-temperature (50°C-65°C) sites on Mt. Erebus: Tramway Ridge, a weather-protected high biomass site, and Western Crater, an extremely exposed low biomass site. Samples were collected along three thermal gradients, one from Western Crater and two within Tramway Ridge, which allowed an examination of the heterogeneity present at Tramway Ridge. We found distinct soil compositions between the two sites, and to a lesser extent within Tramway Ridge, correlated with disparate microbial communities. Notably, pH, not temperature, showed the strongest correlation with these differences. The abundance profiles of several microbial groups were different between the two sites; class Nitrososphaeria amplicon sequence variants (ASVs) dominated the community profiles at Tramway Ridge, whereas Acidobacteriotal ASVs were only found at Western Crater. A co-occurrence network, paired with physicochemical analyses, allowed for finer scale analysis of parameters correlated with differential abundance profiles, with various parameters (total carbon, total nitrogen, soil moisture, soil conductivity, sulfur, phosphorous, and iron) showing significant correlations. ASVs assigned to Chloroflexi classes Ktedonobacteria and Chloroflexia were detected at both sites. Based on the known metabolic capabilities of previously studied members of these groups, we predict that chemolithotrophy is a common strategy in this system. These analyses highlight the importance of conducting broader-scale metagenomics and cultivation efforts at Mt. Erebus to better understand this unique environment.

15.
Int J Syst Evol Microbiol ; 61(Pt 10): 2482-2490, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21097641

RESUMO

An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49(T), was isolated from geothermally heated soil at Hell's Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49(T) is the first representative of a new class in the newly described phylum Armatimonadetes, formerly known as candidate division OP10. Cells of strain T49(T) stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49(T) grew at 50-73 °C with an optimum temperature of 68 °C, and at pH 4.7-5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h(-1) was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49(T) was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49(T) represents a novel bacterial genus and species within the new class Chthonomonadetes classis nov. of the phylum Armatimonadetes. The type strain of Chthonomonas calidirosea gen. nov., sp. nov. is T49(T) ( = DSM 23976(T) = ICMP 18418(T)).


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Aerobiose , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Composição de Bases , Metabolismo dos Carboidratos , Catalase/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Gossypium , Concentração de Íons de Hidrogênio , Locomoção , Dados de Sequência Molecular , Nova Zelândia , Oxirredutases/metabolismo , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura
16.
Front Microbiol ; 12: 783767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173689

RESUMO

The space-for-time substitution approach provides a valuable empirical assessment to infer temporal effects of disturbance from spatial gradients. Applied to predict the response of different ecosystems under current climate change scenarios, it remains poorly tested in microbial ecology studies, partly due to the trophic complexity of the ecosystems typically studied. The McMurdo Dry Valleys (MDV) of Antarctica represent a trophically simple polar desert projected to experience drastic changes in water availability under current climate change scenarios. We used this ideal model system to develop and validate a microbial space-for-time sampling approach, using the variation of geochemical profiles that follow alterations in water availability and reflect past changes in the system. Our framework measured soil electrical conductivity, pH, and water activity in situ to geochemically define 17 space-for-time transects from the shores of four dynamic and two static Dry Valley lakes. We identified microbial taxa that are consistently responsive to changes in wetness in the soils and reliably associated with long-term dry or wet edaphic conditions. Comparisons between transects defined at static (open-basin) and dynamic (closed-basin) lakes highlighted the capacity for geochemically defined space-for-time gradients to identify lasting deterministic impacts of historical changes in water presence on the structure and diversity of extant microbial communities. We highlight the potential for geochemically defined space-for-time transects to resolve legacy impacts of environmental change when used in conjunction with static and dynamic scenarios, and to inform future environmental scenarios through changes in the microbial community structure, composition, and diversity.

17.
Appl Microbiol Biotechnol ; 87(6): 2313-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20582411

RESUMO

The diversity and abundance of active diazotrophs was investigated in a New Zealand pulp and paper wastewater by enrichment with (15)N(2). Purified (15)N-RNA was analysed by reverse transcription, molecular cloning and sequence analysis of 16S rRNA to reveal a diverse community of bacteria as indicated by a Shannon Weaver Index value of > 2.8. The major class represented in the enriched culture were the gamma-Proteobacteria at 85% with a secondary group of the phylum Firmicutes present at 8.2%, the remaining sequences were affiliated with the alpha- and beta-Proteobacterial classes (1.4% and 4.3%, respectively). Three dominant genera, Aeromonas, Pseudomonas and Bacillus, were identified by comparison with published sequences and phylogenetic analysis. To confirm that representatives of the taxonomic groups identified from the active enriched nitrogen-fixing community were capable of fixing nitrogen Aeromonas and Pseudomonas species were cultivated and shown to possess nifH genes. In wastewater, fluorescence in situ hybridisation probing revealed that the dominant nitrogen-fixing population identified in this study were present in the population, but at lower levels. The population is, therefore, reliant on a small sub-population of diazotrophs to supply the community's nitrogen needs above that already present in the wastewater.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , RNA Bacteriano/metabolismo , Bactérias/classificação , Bactérias/genética , Resíduos Industriais/análise , Dados de Sequência Molecular , Isótopos de Nitrogênio/metabolismo , Filogenia , RNA Bacteriano/genética , Esgotos/microbiologia
18.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239205

RESUMO

The Dry Valleys of Antarctica are a unique ecosystem of simple trophic structure, where the abiotic factors that influence soil bacterial communities can be resolved in the absence of extensive biotic interactions. This study evaluated the degree to which aspects of topographic, physicochemical and spatial variation explain patterns of bacterial richness and community composition in 471 soil samples collected across a 220 square kilometer landscape in Southern Victoria Land. Richness was most strongly influenced by physicochemical soil properties, particularly soil conductivity, though significant trends with several topographic and spatial variables were also observed. Structural equation modeling (SEM) supported a final model in which variation in community composition was best explained by physicochemical variables, particularly soil water content, and where the effects of topographic variation were largely mediated through their influence on physicochemical variables. Community dissimilarity increased with distance between samples, and though most of this variation was explained by topographic and physicochemical variation, a small but significant relationship remained after controlling for this environmental variation. As the largest survey of terrestrial bacterial communities of Antarctica completed to date, this work provides fundamental knowledge of the Dry Valleys ecosystem, and has implications globally for understanding environmental factors that influence bacterial distributions.


Assuntos
Ecossistema , Microbiologia do Solo , Regiões Antárticas , Bactérias/genética , Solo
19.
Environ Microbiol ; 11(3): 715-28, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19278453

RESUMO

Tramway Ridge, located near the summit of Mount Erebus in Antarctica, is probably the most remote geothermal soil habitat on Earth. Steam fumaroles maintain moist, hot soil environments creating extreme local physicochemical differentials. In this study a culture-independent approach combining automated rRNA intergenic spacer analysis (ARISA) and a 16S rRNA gene library was used to characterize soil microbial (Bacterial and Archaeal) diversity along intense physicochemical gradients. Statistical analysis of ARISA data showed a clear delineation between bacterial community structure at sites close to fumaroles and all other sites. Temperature and pH were identified as the primary drivers of this demarcation. A clone library constructed from a high-temperature site led to the identification of 18 novel bacterial operational taxonomic units (OTUs). All 16S rRNA gene sequences were deep branching and distantly (85-93%) related to other environmental clones. Five of the signatures branched with an unknown group between candidate division OP10 and Chloroflexi. Within this clade, sequence similarity was low, suggesting it contains several yet-to-be described bacterial groups. Five archaeal OTUs were obtained and exhibited high levels of sequence similarity (95-97%) with Crenarchaeota sourced from deep-subsurface environments on two distant continents. The novel bacterial assemblage coupled with the unique archaeal affinities reinvigorates the hypotheses that Tramway Ridge organisms are relics of archaic microbial lineages specifically adapted to survive in this harsh environment and that this site may provide a portal to the deep-subsurface biosphere.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Microbiologia do Solo , Regiões Antárticas , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Temperatura
20.
FEMS Microbiol Ecol ; 95(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374570

RESUMO

Methane is a potent greenhouse gas responsible for 20-30% of global climate change effects. The global methane budget is ∼500-600 Tg y-1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33-75 Tg y-1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Ecossistema , Água Doce/microbiologia , Temperatura Alta , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa