Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Genet ; 14(9): e1007664, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222779

RESUMO

CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease.


Assuntos
Cognição , Atividade Motora/genética , Domínios Proteicos/genética , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases/genética , Animais , Comportamento Animal , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenótipo , Mutação Puntual , Multimerização Proteica/genética , Ratos , Ratos Sprague-Dawley , Ataxias Espinocerebelares/congênito , Ubiquitina-Proteína Ligases/metabolismo
2.
Hum Mol Genet ; 23(4): 1013-24, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24113144

RESUMO

Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms.


Assuntos
Anormalidades Múltiplas/enzimologia , Ataxia Cerebelar/enzimologia , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/enzimologia , Ubiquitina-Proteína Ligases/genética , Anormalidades Múltiplas/genética , Adolescente , Sequência de Aminoácidos , Animais , Células COS , Ataxia Cerebelar/genética , Cerebelo/metabolismo , Cerebelo/patologia , Chlorocebus aethiops , Feminino , Estudos de Associação Genética , Hormônio Liberador de Gonadotropina/genética , Humanos , Hipogonadismo/genética , Masculino , Camundongos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Ubiquitina-Proteína Ligases/deficiência , Adulto Jovem
3.
Cell Biochem Funct ; 31(8): 724-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23553918

RESUMO

The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP-/- mice with voluntary exercise. CHIP-/- mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP-/- mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo.


Assuntos
Autofagia , Cardiomegalia/metabolismo , Condicionamento Físico Animal , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Nature ; 440(7083): 551-5, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16554822

RESUMO

Exposure of cells to various stresses often leads to the induction of a group of proteins called heat shock proteins (HSPs, molecular chaperones). Hsp70 is one of the most highly inducible molecular chaperones, but its expression must be maintained at low levels under physiological conditions to permit constitutive cellular activities to proceed. Heat shock transcription factor 1 (HSF1) is the transcriptional regulator of HSP gene expression, but it remains poorly understood how newly synthesized HSPs return to basal levels when HSF1 activity is attenuated. CHIP (carboxy terminus of Hsp70-binding protein), a dual-function co-chaperone/ubiquitin ligase, targets a broad range of chaperone substrates for proteasomal degradation. Here we show that CHIP not only enhances Hsp70 induction during acute stress but also mediates its turnover during the stress recovery process. Central to this dual-phase regulation is its substrate dependence: CHIP preferentially ubiquitinates chaperone-bound substrates, whereas degradation of Hsp70 by CHIP-dependent targeting to the ubiquitin-proteasome system occurs when misfolded substrates have been depleted. The sequential catalysis of the CHIP-associated chaperone adaptor and its bound substrate provides an elegant mechanism for maintaining homeostasis by tuning chaperone levels appropriately to reflect the status of protein folding within the cytoplasm.


Assuntos
Proteínas de Choque Térmico HSP70/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Humanos , Camundongos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
J Biol Chem ; 284(31): 20649-59, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19465479

RESUMO

Our previous studies have implicated CHIP (carboxyl terminus of Hsp70-interacting protein) as a co-chaperone/ubiquitin ligase whose activities yield protection against stress-induced apoptotic events. In this report, we demonstrate a stress-dependent interaction between CHIP and Daxx (death domain-associated protein). This interaction interferes with the stress-dependent association of HIPK2 with Daxx, blocking phosphorylation of serine 46 in p53 and inhibiting the p53-dependent apoptotic program. Microarray analysis confirmed suppression of the p53-dependent transcriptional portrait in CHIP(+/+) but not in CHIP(-/-) heat shocked mouse embryonic fibroblasts. The interaction between CHIP and Daxx results in ubiquitination of Daxx, which is then partitioned to an insoluble compartment of the cell. In vitro ubiquitination of Daxx by CHIP revealed that ubiquitin chain formation utilizes non-canonical lysine linkages associated with resistance to proteasomal degradation. The ubiquitination of Daxx by CHIP utilizes lysines 630 and 631 and competes with the sumoylation machinery of the cell at these residues. These studies implicate CHIP as a stress-dependent regulator of Daxx that counters the pro-apoptotic influence of Daxx in the cell. By abrogating p53-dependent apoptotic pathways and by ubiquitination competitive with Daxx sumoylation, CHIP integrates the proteotoxic stress response of the cell with cell cycle pathways that influence cell survival.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Transporte/química , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas Correpressoras , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Lisina/metabolismo , Camundongos , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Solubilidade , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Regulação para Cima/genética
6.
J Clin Invest ; 117(11): 3211-23, 2007 11.
Artigo em Inglês | MEDLINE | ID: mdl-17965779

RESUMO

Cardiac hypertrophy is a major cause of human morbidity and mortality. Although much is known about the pathways that promote hypertrophic responses, mechanisms that antagonize these pathways have not been as clearly defined. Atrogin-1, also known as muscle atrophy F-box, is an F-box protein that inhibits pathologic cardiac hypertrophy by participating in a ubiquitin ligase complex that triggers degradation of calcineurin, a factor involved in promotion of pathologic hypertrophy. Here we demonstrated that atrogin-1 also disrupted Akt-dependent pathways responsible for physiologic cardiac hypertrophy. Our results indicate that atrogin-1 does not affect the activity of Akt itself, but serves as a coactivator for members of the Forkhead family of transcription factors that function downstream of Akt. This coactivator function of atrogin-1 was dependent on its ubiquitin ligase activity and the deposition of polyubiquitin chains on lysine 63 of Foxo1 and Foxo3a. Transgenic mice expressing atrogin-1 in the heart displayed increased Foxo1 ubiquitylation and upregulation of known Forkhead target genes concomitant with suppression of cardiac hypertrophy, while mice lacking atrogin-1 displayed the opposite physiologic phenotype. These experiments define a role for lysine 63-linked ubiquitin chains in transcriptional coactivation and demonstrate that atrogin-1 uses this mechanism to disrupt physiologic cardiac hypertrophic signaling through its effects on Forkhead transcription factors.


Assuntos
Cardiomegalia/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Coração/anatomia & histologia , Proteínas Musculares/metabolismo , Miocárdio , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Cardiomegalia/patologia , Células Cultivadas , Ecocardiografia , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fenótipo , Poliubiquitina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais/fisiologia
7.
J Cell Biol ; 171(6): 925-30, 2005 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-16344307

RESUMO

Overexpression studies have identified X-linked inhibitor of apoptosis protein (XIAP) as a potent inhibitor of caspases. However, the exact function of endogenous XIAP in regulating mammalian apoptosis is less clear. Endogenous XIAP strictly regulates cytochrome c-dependent caspase activation in sympathetic neurons but not in many mitotic cells. We report that postmitotic cardiomyocytes, unlike fibroblasts, are remarkably resistant to cytosolic microinjection of cytochrome c. The cardiomyocyte resistance to cytochrome c is mediated by endogenous XIAP, as XIAP-deficient cardiomyocytes die rapidly with cytosolic cytochrome c alone. Importantly, we found that cardiomyocytes, like neurons, have markedly reduced Apaf-1 levels and that this decrease in Apaf-1 is directly linked to the tight regulation of caspase activation by XIAP. These data identify an important function of XIAP in cardiomyocytes and point to a striking similarity in the regulation of apoptosis in postmitotic cells.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Fator Apoptótico 1 Ativador de Proteases , Caspases/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Citocromos c/farmacologia , Citosol/metabolismo , Camundongos , Microinjeções , Microscopia de Fluorescência , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Ratos , Fatores de Tempo , Transfecção , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/farmacologia
8.
J Cell Biol ; 167(6): 1147-59, 2004 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-15596539

RESUMO

Much effort has focused on characterizing the signal transduction cascades that are associated with cardiac hypertrophy. In spite of this, we still know little about the mechanisms that inhibit hypertrophic growth. We define a novel anti-hypertrophic signaling pathway regulated by muscle ring finger protein-1 (MURF1) that inhibits the agonist-stimulated PKC-mediated signaling response in neonatal rat ventricular myocytes. MURF1 interacts with receptor for activated protein kinase C (RACK1) and colocalizes with RACK1 after activation with phenylephrine or PMA. Coincident with this agonist-stimulated interaction, MURF1 blocks PKCepsilon translocation to focal adhesions, which is a critical event in the hypertrophic signaling cascade. MURF1 inhibits focal adhesion formation, and the activity of downstream effector ERK1/2 is also inhibited in the presence of MURF1. MURF1 inhibits phenylephrine-induced (but not IGF-1-induced) increases in cell size. These findings establish that MURF1 is a key regulator of the PKC-dependent hypertrophic response and can blunt cardiomyocyte hypertrophy, which may have important implications in the pathophysiology of clinical cardiac hypertrophy.


Assuntos
Cardiomegalia/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteína Quinase C/antagonistas & inibidores , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células COS , Cardiomegalia/patologia , Tamanho Celular/efeitos dos fármacos , Chlorocebus aethiops , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Proteínas Musculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Peptídeos/metabolismo , Fenilefrina/antagonistas & inibidores , Fenilefrina/farmacologia , Proteína Quinase C/metabolismo , Proteína Quinase C-épsilon , Ratos , Receptores de Quinase C Ativada , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/farmacologia
9.
J Mol Cell Cardiol ; 44(1): 47-58, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17662997

RESUMO

The mechanisms that regulate the differentiation program of multipotential stem cells remain poorly understood. In order to define the cues that delineate endothelial commitment from precursors, we screened for candidate regulatory genes in differentiating mouse embryoid bodies. We found that the PR/SET domain protein, PRDM6, is enriched in flk1(+) hematovascular precursor cells using a microarray-based approach. As determined by 5' RACE, full-length PRDM6 protein contains a PR domain and four Krüppel-like zinc fingers. In situ hybridization in mouse embryos demonstrates staining of the primitive streak, allantois, heart, outflow tract, paraaortic splanchnopleura (P-Sp)/aorto-gonadal-mesonephric (AGM) region and yolk sac, all sites known to be enriched in vascular precursor cells. PRDM6 is also detected in embryonic and adult-derived endothelial cell lines. PRDM6 is co-localized with histone H4 and methylates H4-K20 (but not H3) in vitro and in vivo, which is consistent with the known participation of PR domains in histone methyltransferase activity. Overexpression of PRDM6 in mouse embryonic endothelial cells induces apoptosis by activating caspase-3 and inducing G1 arrest. PRDM6 inhibits cell proliferation as determined by BrdU incorporation in endothelial cells, but not in rat aortic smooth muscle cells. Overexpression of PRDM6 also results in reduced tube formation in cultured endothelial cells grown in Matrigel. Taken together, our data indicate that PRDM6 is expressed by vascular precursors, has differential effects in endothelial cells and smooth muscle cells, and may play a role in vascular precursor differentiation and survival by modulating local chromatin-remodeling activity within hematovascular subpopulations during development.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Diferenciação Celular , Células Endoteliais/citologia , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Ciclo Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Células Endoteliais/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Proteínas Metiltransferases , Ratos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Células-Tronco/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
J Clin Invest ; 114(8): 1058-71, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489953

RESUMO

Calcineurin, which binds to the Z-disc in cardiomyocytes via alpha-actinin, promotes cardiac hypertrophy in response to numerous pathologic stimuli. However, the endogenous mechanisms regulating calcineurin activity in cardiac muscle are not well understood. We demonstrate that a muscle-specific F-box protein called atrogin-1, or muscle atrophy F-box, directly interacts with calcineurin A and alpha-actinin-2 at the Z-disc of cardiomyocytes. Atrogin-1 associates with Skp1, Cul1, and Roc1 to assemble an SCF(atrogin-1) complex with ubiquitin ligase activity. Expression of atrogin-1 decreases levels of calcineurin A and promotes its ubiquitination. Moreover, atrogin-1 attenuates agonist-induced calcineurin activity and represses calcineurin-dependent transactivation and NFATc4 translocation. Conversely, downregulation of atrogin-1 using adenoviral small interfering RNA (siRNA) expression enhances agonist-induced calcineurin activity and cardiomyocyte hypertrophy. Consistent with these cellular observations, overexpression of atrogin-1 in hearts of transgenic mice reduces calcineurin protein levels and blunts cardiac hypertrophy after banding of the thoracic aorta. These studies indicate that the SCF(atrogin-1) ubiquitin ligase complex interacts with and represses calcineurin by targeting calcineurin for ubiquitin-mediated proteolysis, leading to inhibition of cardiac hypertrophy in response to pathologic stimuli.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Proteínas F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Actinina/genética , Actinina/metabolismo , Animais , Células COS , Calcineurina/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Proteínas Culina/genética , Proteínas Culina/metabolismo , Ecocardiografia , Proteínas F-Box/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Substâncias Macromoleculares , Camundongos , Camundongos Transgênicos , Proteínas Musculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Tamanho do Órgão , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
Cell Stress Chaperones ; 8(4): 303-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15115282

RESUMO

CHIP, carboxy terminus of Hsc70 interacting protein, is a cytoplasmic protein whose amino acid sequence is highly conserved across species. It is most highly expressed in cardiac and skeletal muscle and brain. The primary amino acid sequence is characterized by 3 domains, a tetratricopeptide repeat (TPR) domain at its amino terminus, a U-box domain at its carboxy terminus, and an intervening charged domain. CHIP interacts with the molecular chaperones Hsc70-Hsp70 and Hsp90 through its TPR domain, whereas its U-box domain contains its E3 ubiquitin ligase activity. Its interaction with these molecular chaperones results in client substrate ubiquitylation and degradation by the proteasome. Thus, CHIP acts to tilt the folding-refolding machinery toward the degradative pathway, and it serves as a link between the two. Because protein degradation is required for healthy cellular function, CHIP's ability to degrade proteins that are the signature of disease, eg, ErbB2 in breast and ovarian cancers, could prove to be a point of therapeutic intervention.


Assuntos
Cisteína Endopeptidases/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multienzimáticos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma
13.
Mol Cell Biol ; 33(22): 4461-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24043303

RESUMO

The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging.


Assuntos
Sirtuínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Linhagem Celular , Deleção de Genes , Células HEK293 , Histonas/metabolismo , Humanos , Camundongos , Mutação Puntual , Mapas de Interação de Proteínas , Estabilidade Proteica , Sirtuínas/química , Sirtuínas/genética , Ativação Transcricional , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Regulação para Cima
14.
J Biol Chem ; 280(46): 38673-81, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16169850

RESUMO

The cytoplasm is protected against the perils of protein misfolding by two mechanisms: molecular chaperones (which facilitate proper folding) and the ubiquitin-proteasome system, which regulates degradation of misfolded proteins. CHIP (carboxyl terminus of Hsp70-interacting protein) is an Hsp70-associated ubiquitin ligase that participates in this process by ubiquitylating misfolded proteins associated with cytoplasmic chaperones. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. Using a proteomics approach, we have identified BAG2, a previously uncharacterized BAG domain-containing protein, as a common component of CHIP holocomplexes in vivo. Binding assays indicate that BAG2 associates with CHIP as part of a ternary complex with Hsc70, and BAG2 colocalizes with CHIP under both quiescent conditions and after heat shock. In vitro and in vivo ubiquitylation assays indicate that BAG2 is an efficient and specific inhibitor of CHIP-dependent ubiquitin ligase activity. This activity is due, in part, to inhibition of interactions between CHIP and its cognate ubiquitin-conjugating enzyme, UbcH5a, which may in turn be facilitated by ATP-dependent remodeling of the BAG2-Hsc70-CHIP heterocomplex. The association of BAG2 with CHIP provides a cochaperone-dependent regulatory mechanism for preventing unregulated ubiquitylation of misfolded proteins by CHIP.


Assuntos
Citoplasma/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Linhagem Celular , Cromatina/química , Imunoprecipitação da Cromatina , Proteínas de Drosophila/química , Deleção de Genes , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Ligação ao Ferro/química , Espectrometria de Massas , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Fatores de Tempo , Transfecção , Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
15.
Proc Natl Acad Sci U S A ; 101(52): 18135-40, 2004 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-15601779

RESUMO

Muscle-specific RING finger protein 1 (MuRF1) is a sarcomere-associated protein that is restricted to cardiac and skeletal muscle. In skeletal muscle, MuRF1 is up-regulated by conditions that provoke atrophy, but its function in the heart is not known. The presence of a RING finger in MuRF1 raises the possibility that it is a component of the ubiquitin-proteasome system of protein degradation. We performed a yeast two-hybrid screen to search for interaction partners of MuRF1 in the heart that might be targets of its putative ubiquitin ligase activity. This screen identified troponin I as a MuRF1 partner protein. MuRF1 and troponin I were found to associate both in vitro and in vivo in cultured cardiomyocytes. MuRF1 reduced steady-state troponin I levels when coexpressed in COS-7 cells and increased degradation of endogenous troponin I protein in cardiomyocytes. The degradation of troponin I in cardiomyocytes was associated with the accumulation of ubiquitylated intermediates of troponin I and was proteasome-dependent. In vitro, MuRF1 functioned as a ubiquitin ligase to catalyze ubiquitylation of troponin I through a RING finger-dependent mechanism. In isolated cardiomyocytes, MuRF1 reduced indices of contractility. In cardiomyocytes, these processes may determine the balance between hypertrophic and antihypertrophic signals and the regulation of myocyte contractile responses in the setting of heart failure.


Assuntos
Troponina I/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/fisiologia , Animais , Animais Recém-Nascidos , Atrofia , Células COS , Catálise , Células Cultivadas , Técnica Indireta de Fluorescência para Anticorpo , Biblioteca Gênica , Proteínas de Fluorescência Verde/metabolismo , Coração/fisiologia , Ventrículos do Coração/citologia , Humanos , Hipertrofia/patologia , Proteínas Musculares , Miocárdio/metabolismo , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Fatores de Tempo , Proteínas com Motivo Tripartido , Troponina I/química , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
16.
EMBO J ; 22(20): 5446-58, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14532117

RESUMO

Induction of molecular chaperones is the characteristic protective response to environmental stress, and is regulated by a transcriptional program that depends on heat shock factor 1 (HSF1), which is normally under negative regulatory control by molecular chaperones Hsp70 and Hsp90. In metazoan species, the chaperone system also provides protection against apoptosis. We demonstrate that the dual function co-chaperone/ubiquitin ligase CHIP (C-terminus of Hsp70-interacting protein) regulates activation of the stress-chaperone response through induced trimerization and transcriptional activation of HSF1, and is required for protection against stress-induced apoptosis in murine fibroblasts. The consequences of this function are demonstrated by the phenotype of mice lacking CHIP, which develop normally but are temperature-sensitive and develop apoptosis in multiple organs after environmental challenge. CHIP exerts a central and unique role in tuning the response to stress at multiple levels by regulation of protein quality control and transcriptional activation of stress response signaling.


Assuntos
Apoptose/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/fisiologia , Proteínas de Choque Térmico HSP70/genética , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Fatores de Transcrição de Choque Térmico , Temperatura Alta , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Estresse Mecânico , Fatores de Transcrição , Ativação Transcricional , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa