Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 40(1): 71-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12211079

RESUMO

Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on arsenic genotoxicity was evaluated using a mouse peripheral blood micronucleus (MN) assay. In duplicate experiments, male C57Bl/6J mice were fed folate-deficient or folate-sufficient diets for 7 weeks. During week 7, mice on each diet were given four consecutive daily doses of sodium arsenite (0, 2.5, 5, or 10 mg/kg) via oral gavage. Over the course of the study the folate-deficient diet produced an approximate 60% depletion of red blood cell folate. Folate deficiency by itself was associated with small but significant increases in MN in normochromatic erythrocytes (NCEs) and polychromatic erythrocytes (PCEs). Arsenic exposure was associated with significant increases in MN-PCEs in both folate-deficient and folate-sufficient mice. MN-PCE frequencies at the 10 mg/kg dose of arsenic were increased 4.5-fold over vehicle control in folate-deficient mice and 2.1-fold over control in folate-sufficient mice. At the 5 and 10 mg/kg doses of arsenic, MN-PCE levels were significantly higher (1.3-fold and 2.4-fold, respectively) in folate-deficient mice compared to folate-sufficient mice. Very few MN from either control or treated animals in either experiment exhibited kinetochore immunostaining, suggesting that the MN were derived from chromosome breakage rather than from whole chromosome loss. These results indicate that folate deficiency enhances arsenic-induced clastogenesis at doses of 5 mg/kg and higher.


Assuntos
Arsênio/toxicidade , Dieta , Deficiência de Ácido Fólico/genética , Micronúcleos com Defeito Cromossômico , Mutagênicos/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Mol Cancer Ther ; 8(10): 2937-46, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19808977

RESUMO

Antibodies directed against B cells are in use for the treatment of non-Hodgkin's lymphoma and autoimmune disorders. The B-cell-restricted surface antigen CD79b, a signaling component of the B-cell receptor, has been shown as a promising antibody target in mouse efficacy models of systemic lupus erythematosus. Anti-CD79b antibody-drug conjugates (ADC), cytotoxic drugs linked through specialized chemical linkers to antibodies, are effective in mouse xenograft models of non-Hodgkin's lymphoma. We were interested in evaluating the systemic effects of anti-CD79b antibodies and ADCs in normal animals as a step toward the development of these molecules as therapeutics. As we were unable to identify any cell surface binding anti-human CD79b antibodies that were cross-reactive to other species, we developed an antibody to cynomolgus monkey (Macaca fascicularis) CD79b (anti-cyCD79b). The anti-cynomolgus antibody, anti-cyCD79b (10D10), and the maytansine (tubulin inhibitor)-conjugated ADC, anti-cyCD79b (10D10)-MCC-DM1, were administered to cynomolgus monkeys at approximately 30 mg/kg (6,000 microg DM1/m(2)) for two doses 3 weeks apart. Anti-cyCD79b and anti-cyCD79b-MCC-DM1 resulted in peripheral blood B-cell depletion of approximately 65% and approximately 94%, respectively. In addition, anti-cyCD79b-MCC-DM1 resulted in near-complete absence of splenic germinal centers, an observation supporting an effect on dividing B cells. Both molecules were well tolerated, with minimal findings for the antibody and findings for the ADC limited to the lymphoid and hematopoietic systems, liver, and peripheral nerves. These preclinical data suggest that targeting CD79b with antibodies or ADCs may provide safe and effective therapies for B-cell malignancies and autoimmune diseases.


Assuntos
Anticorpos/imunologia , Antineoplásicos/farmacologia , Antígenos CD79/imunologia , Sequência de Aminoácidos , Animais , Formação de Anticorpos/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Antígenos CD79/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Reações Cruzadas/efeitos dos fármacos , Citometria de Fluxo , Humanos , Tolerância Imunológica/efeitos dos fármacos , Macaca fascicularis/sangue , Macaca fascicularis/imunologia , Maitansina/farmacologia , Camundongos , Dados de Sequência Molecular , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa