Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 123(17): 2682-90, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24596419

RESUMO

The MYB oncogene is widely expressed in acute leukemias and is important for the continued proliferation of leukemia cells, suggesting that MYB may be a therapeutic target in these diseases. However, realization of this potential requires a significant therapeutic window for MYB inhibition, given its essential role in normal hematopoiesis, and an approach for developing an effective therapeutic. We previously showed that the interaction of c-Myb with the coactivator CBP/p300 is essential for its transforming activity. Here, by using cells from Booreana mice which carry a mutant allele of c-Myb, we show that this interaction is essential for in vitro transformation by the myeloid leukemia oncogenes AML1-ETO, AML1-ETO9a, MLL-ENL, and MLL-AF9. We further show that unlike cells from wild-type mice, Booreana cells transduced with AML1-ETO9a or MLL-AF9 retroviruses fail to generate leukemia upon transplantation into irradiated recipients. Finally, we have begun to explore the molecular mechanisms underlying these observations by gene expression profiling. This identified several genes previously implicated in myeloid leukemogenesis and HSC function as being regulated in a c-Myb-p300-dependent manner. These data highlight the importance of the c-Myb-p300 interaction in myeloid leukemogenesis and suggest disruption of this interaction as a potential therapeutic strategy for acute myeloid leukemia.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Alelos , Animais , Transformação Celular Neoplásica , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Mutação , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo
2.
Blood Adv ; 8(8): 2032-2043, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38295282

RESUMO

ABSTRACT: Autophagy is an intracellular survival process that has established roles in the long-term survival and function of hematopoietic stem cells (HSC). We investigated the contribution of autophagy to HSC fitness during allogeneic transplantation and graft-versus-host disease (GVHD). We demonstrate in vitro that both tumor necrosis factor and IL-1ß, major components of GVHD cytokine storm, synergistically promote autophagy in both HSC and their more mature hematopoietic progenitor cells (HPC). In vivo we demonstrate that autophagy is increased in donor HSC and HPC during GVHD. Competitive transplant experiments demonstrated that autophagy-deficient cells display reduced capacity to reconstitute the hematopoietic system compared to wild-type counterparts. In a major histocompatibility complex-mismatched model of GVHD and associated cytokine dysregulation, we demonstrate that autophagy-deficient HSC and progenitors fail to establish durable hematopoiesis, leading to primary graft failure and universal transplant related mortality. Using several different models, we confirm that autophagy activity is increased in early progenitor and HSC populations in the presence of T-cell-derived inflammatory cytokines and that these HSC populations require autophagy to survive. Thus, autophagy serves as a key survival mechanism in HSC and progenitor populations after allogeneic stem cell transplant and may represent a therapeutic target to prevent graft failure during GVHD.


Assuntos
Autofagia , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Camundongos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Modelos Animais de Doenças , Transplante Homólogo , Rejeição de Enxerto , Citocinas/metabolismo
3.
Leukemia ; 36(2): 333-347, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34518644

RESUMO

We show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist. Likewise, injection of a recombinant OSM molecular trap made of OSMR complex extracellular domains enhances HSC mobilization in poor mobilizing C57BL/6 and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Mechanistically, OSM attenuates HSC chemotactic response to CXCL12 and increases HSC homing to the BM signaling indirectly via BM endothelial and mesenchymal cells which are the only cells expressing OSMR in the BM. OSM up-regulates E-selectin expression on BM endothelial cells indirectly increasing HSC proliferation. RNA sequencing of HSCs from Osmr-/- and wild-type mice suggest that HSCs have altered cytoskeleton reorganization, energy usage and cycling in the absence of OSM signaling in niches. Therefore OSM is an important regulator of HSC niche function restraining HSC mobilization and anti-OSM therapy combined with current mobilizing regimens may improve HSPC mobilization for transplantation.


Assuntos
Medula Óssea/fisiologia , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Oncostatina M/metabolismo , Nicho de Células-Tronco , Animais , Medula Óssea/efeitos dos fármacos , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
4.
Antibodies (Basel) ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430104

RESUMO

The complement system has demonstrated roles in regulating tumor growth, although these may differ between tumor types. The current study used two murine breast cancer models (EMT6 and 4T1) to investigate whether pharmacological targeting of receptors for complement proteins C3a (C3aR) and C5a (C5aR1) is protective in murine breast cancer models. In contrast to prior studies in other tumor models, treatment with the selective C5aR1 antagonist PMX53 had no effect on tumor growth. However, treatment of mice with a dual C3aR/C5aR1 agonist (YSFKPMPLaR) significantly slowed mammary tumor development and progression. Examination of receptor expression by quantitative polymerase chain reaction (qPCR) analysis showed very low levels of mRNA expression for either C3aR or C5aR1 by EMT6 or 4T1 mammary carcinoma cell lines compared with the J774 macrophage line or bone marrow-derived macrophages. Moreover, flow cytometric analysis found no evidence of C3aR or C5aR1 protein expression by either EMT6 or 4T1 cells, leading us to hypothesize that the tumor inhibitory effects of the dual agonist are indirect, possibly via regulation of the anti-tumor immune response. This hypothesis was supported by flow cytometric analysis of tumor infiltrating leukocyte populations, which demonstrated a significant increase in T lymphocytes in mice treated with the C3aR/C5aR1 agonist. These results support an immunoregulatory role for complement receptors in primary murine mammary carcinoma models. They also suggest that complement activation peptides can influence the anti-tumor response in different ways depending on the cancer type, the host immune response to the tumor and levels of endogenous complement activation within the tumor microenvironment.

5.
Exp Hematol ; 82: 33-42, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045657

RESUMO

The erythroblastic island (EBI) is a multicellular structure forming an erythropoietic niche consisting of a central macrophage surrounded by a rosette of maturing erythroblasts. Since their discovery more than 60 years ago, simultaneous quantification and visualization of EBIs remain difficult. Although flow cytometry enables high-throughput quantification of cell aggregates co-expressing macrophage and erythroblast markers, it cannot visually confirm whether the aggregates are genuine EBIs. While immunofluorescence microscopy allows visualization of EBIs, its low throughput limits its use for quantification. In the current study we employed nine-channel imaging flow cytometry (IFC) to develop a method to directly visualize and quantify EBIs in the mouse bone marrow. We found that EBI central macrophages do express F4/80, VCAM-1, and CD169, but not CD11b or Ly6G, and that CD11b+Ly6G+F4/80- granulocytes are found associated at the periphery of 40%-60% EBIs. Furthermore, we show for the first time using IFC that in vivo treatment with the hematopoietic stem cell-mobilizing cytokine granulocyte colony-stimulating factor (G-CSF) reduced EBI frequency in the bone marrow by more than 100-fold. These results indicate that mobilizing doses of G-CSF cause a collapse of EBIs in the bone marrow.


Assuntos
Medula Óssea/metabolismo , Eritroblastos , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos , Macrófagos , Animais , Antígenos de Diferenciação/biossíntese , Eritroblastos/citologia , Eritroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Granulócitos/citologia , Granulócitos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos
6.
Front Immunol ; 11: 583550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123170

RESUMO

Anemia of inflammation (AI) is the second most prevalent anemia after iron deficiency anemia and results in persistent low blood erythrocytes and hemoglobin, fatigue, weakness, and early death. Anemia of inflammation is common in people with chronic inflammation, chronic infections, or sepsis. Although several studies have reported the effect of inflammation on stress erythropoiesis and iron homeostasis, the mechanisms by which inflammation suppresses erythropoiesis in the bone marrow (BM), where differentiation and maturation of erythroid cells from hematopoietic stem cells (HSCs) occurs, have not been extensively studied. Here we show that in a mouse model of acute sepsis, bacterial lipopolysaccharides (LPS) suppress medullary erythroblastic islands (EBIs) and erythropoiesis in a TLR-4- and MyD88-dependent manner with concomitant mobilization of HSCs. LPS suppressive effect on erythropoiesis is indirect as erythroid progenitors and erythroblasts do not express TLR-4 whereas EBI macrophages do. Using cytokine receptor gene knock-out mice LPS-induced mobilization of HSCs is G-CSF-dependent whereas LPS-induced suppression of medullary erythropoiesis does not require G- CSF-, IL- 1-, or TNF-mediated signaling. Therefore suppression of medullary erythropoiesis and mobilization of HSCs in response to LPS are mechanistically distinct. Our findings also suggest that EBI macrophages in the BM may sense innate immune stimuli in response to acute inflammation or infections to rapidly convert to a pro-inflammatory function at the expense of their erythropoietic function.


Assuntos
Anemia/imunologia , Medula Óssea/imunologia , Eritropoese/imunologia , Macrófagos/imunologia , Sepse/complicações , Animais , Fator Estimulador de Colônias de Granulócitos , Interleucina-1 , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Sepse/imunologia , Fator de Necrose Tumoral alfa
7.
Blood Adv ; 3(3): 406-418, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30733301

RESUMO

In normoxia, hypoxia-inducible transcription factors (HIFs) are rapidly degraded within the cytoplasm as a consequence of their prolyl hydroxylation by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes. We have previously shown that hematopoietic stem and progenitor cells (HSPCs) require HIF-1 for effective mobilization in response to granulocyte colony-stimulating factor (G-CSF) and CXCR4 antagonist AMD3100/plerixafor. Conversely, HIF PHD inhibitors that stabilize HIF-1 protein in vivo enhance HSPC mobilization in response to G-CSF or AMD3100 in a cell-intrinsic manner. We now show that extrinsic mechanisms involving vascular endothelial growth factor receptor-2 (VEGFR2), via bone marrow (BM) endothelial cells, are also at play. PTK787/vatalanib, a tyrosine kinase inhibitor selective for VEGFR1 and VEGFR2, and neutralizing anti-VEGFR2 monoclonal antibody DC101 blocked enhancement of HSPC mobilization by FG-4497. VEGFR2 was absent on mesenchymal and hematopoietic cells and was detected only in Sca1+ endothelial cells in the BM. We propose that HIF PHD inhibitor FG-4497 enhances HSPC mobilization by stabilizing HIF-1α in HSPCs as previously demonstrated, as well as by activating VEGFR2 signaling in BM endothelial cells, which facilitates HSPC egress from the BM into the circulation.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Isoquinolinas/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ftalazinas/farmacologia , Piridinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Cancer Lett ; 343(1): 98-106, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24075958

RESUMO

The effect of combining MYB suppression with the histone deacetylase inhibitor LBH589 was studied in human myeloid leukemia cell lines. MYB knockdown inhibited proliferation and induced apoptosis in U937 and K562 cells in vitro, and also sensitized both to the pro-apoptotic effect of LBH589. This was accompanied by enhanced expression of the pro-apoptotic BCL2 family members BOK and BIM. U937 cells carrying inducible MYB shRNA were also transplanted into NOD/SCID mice. The combination of MYB knockdown and LBH589 prolonged survival compared to either treatment alone, suggesting that further development of such combinations might lead to effective and safe leukemia therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Animais , Antineoplásicos/química , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Células K562 , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Panobinostat , Interferência de RNA , Células U937
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa