Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2302156120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079551

RESUMO

Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.


Assuntos
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiologia , Anaerobiose , Dióxido de Silício , Hibridização in Situ Fluorescente , Fósseis , Archaea/genética , Oxirredução , Sulfatos , Silicatos , Filogenia , Consórcios Microbianos
2.
PLoS Comput Biol ; 18(2): e1009833, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157697

RESUMO

As sequence and structure comparison algorithms gain sensitivity, the intrinsic interconnectedness of the protein universe has become increasingly apparent. Despite this general trend, ß-trefoils have emerged as an uncommon counterexample: They are an isolated protein lineage for which few, if any, sequence or structure associations to other lineages have been identified. If ß-trefoils are, in fact, remote islands in sequence-structure space, it implies that the oligomerizing peptide that founded the ß-trefoil lineage itself arose de novo. To better understand ß-trefoil evolution, and to probe the limits of fragment sharing across the protein universe, we identified both 'ß-trefoil bridging themes' (evolutionarily-related sequence segments) and 'ß-trefoil-like motifs' (structure motifs with a hallmark feature of the ß-trefoil architecture) in multiple, ostensibly unrelated, protein lineages. The success of the present approach stems, in part, from considering ß-trefoil sequence segments or structure motifs rather than the ß-trefoil architecture as a whole, as has been done previously. The newly uncovered inter-lineage connections presented here suggest a novel hypothesis about the origins of the ß-trefoil fold itself-namely, that it is a derived fold formed by 'budding' from an Immunoglobulin-like ß-sandwich protein. These results demonstrate how the evolution of a folded domain from a peptide need not be a signature of antiquity and underpin an emerging truth: few protein lineages escape nature's sewing table.


Assuntos
Lotus , Imunoglobulina G , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína
3.
Proc Natl Acad Sci U S A ; 117(37): 22873-22879, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900930

RESUMO

All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life's emergence suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog-and proposed evolutionary predecessor-of the Wood-Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate (HCOO-), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13C confirmed formate production. Separately, deuterium (2H) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.


Assuntos
Dióxido de Carbono/química , Ciclo do Carbono , Transporte de Elétrons , Hidrogênio/química , Concentração de Íons de Hidrogênio , Fontes Hidrotermais/química , Oxirredução , Força Próton-Motriz
4.
Mol Biol Evol ; 38(8): 3033-3045, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33822172

RESUMO

Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology-evolutionary relatedness-is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit-from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.


Assuntos
Especiação Genética , Genômica/tendências , Filogenia , Genoma Viral , Genômica/métodos
5.
Mol Biol Evol ; 37(8): 2332-2340, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32316034

RESUMO

Comparative genomics and molecular phylogenetics are foundational for understanding biological evolution. Although many studies have been made with the aim of understanding the genomic contents of early life, uncertainty remains. A study by Weiss et al. (Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF. 2016. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 1(9):16116.) identified a number of protein families in the last universal common ancestor of archaea and bacteria (LUCA) which were not found in previous works. Here, we report new research that suggests the clustering approaches used in this previous study undersampled protein families, resulting in incomplete phylogenetic trees which do not reflect protein family evolution. Phylogenetic analysis of protein families which include more sequence homologs rejects a simple LUCA hypothesis based on phylogenetic separation of the bacterial and archaeal domains for a majority of the previously identified LUCA proteins (∼82%). To supplement limitations of phylogenetic inference derived from incompletely populated orthologous groups and to test the hypothesis of a period of rapid evolution preceding the separation of the domains, we compared phylogenetic distances both within and between domains, for thousands of orthologous groups. We find a substantial diversity of interdomain versus intradomain branch lengths, even among protein families which exhibit a single domain separating branch and are thought to be associated with the LUCA. Additionally, phylogenetic trees with long interdomain branches relative to intradomain branches are enriched in information categories of protein families in comparison to those associated with metabolic functions. These results provide a new view of protein family evolution and temper claims about the phenotype and habitat of the LUCA.


Assuntos
Archaea/genética , Bactérias/genética , Filogenia , Proteínas Arqueais/genética , Proteínas de Bactérias/genética
6.
Plant Cell Physiol ; 62(1): 100-110, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33169162

RESUMO

Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Bacterianos , Proteínas Repressoras/metabolismo , Rhodobacter capsulatus/metabolismo , Sulfetos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/fisiologia
7.
Nature ; 526(7574): 531-5, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26375009

RESUMO

Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.


Assuntos
Archaea/metabolismo , Deltaproteobacteria/metabolismo , Metano/metabolismo , Análise de Célula Única , Simbiose , Anaerobiose , Archaea/citologia , Citocromos/genética , Citocromos/metabolismo , Citocromos/ultraestrutura , Deltaproteobacteria/citologia , Difusão , Transporte de Elétrons , Genoma Arqueal/genética , Genoma Bacteriano/genética , Heme/metabolismo , Microbiota/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Sulfatos/metabolismo
8.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625978

RESUMO

Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multicelled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches, including correlative fluorescence in situ hybridization-electron microscopy (FISH-EM), transmission electron microscopy (TEM), and serial block face scanning electron microscopy (SBEM) three-dimensional (3D) reconstructions. FISH-EM of methane seep-derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortium types revealed cellular volumes of ANME and their symbiotic partners that were larger than previous estimates based on light microscopy. Polyphosphate-like granule-containing ANME (tentatively termed ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell, and the volume of the cell was larger in proportion to the number of granules inside it, but the percentage of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their ability to perform anaerobic methane oxidation.IMPORTANCE Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known of the distinguishing characteristics of these groups. Here, we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables.


Assuntos
Archaea/classificação , Archaea/ultraestrutura , Metano/metabolismo , Simbiose , Anaerobiose , Archaea/metabolismo , Deltaproteobacteria/metabolismo , Deltaproteobacteria/ultraestrutura , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Consórcios Microbianos , Microscopia Eletrônica , Oxirredução , Filogenia
9.
Proc Natl Acad Sci U S A ; 112(17): 5449-54, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25825729

RESUMO

Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history.


Assuntos
Evolução Biológica , Fósseis , Fenômenos Fisiológicos Vegetais , Dióxido de Silício/metabolismo , Plantas/genética , Plantas/metabolismo
10.
Environ Microbiol ; 17(7): 2542-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25655651

RESUMO

To measure single-cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labelling of microbial populations with heavy water (a passive tracer) and (15) N ammonium in combination with multi-isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single-cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single-cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (∼0.1 atom % (2) H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (∼6 h, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium versus amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments.


Assuntos
Óxido de Deutério/metabolismo , Isótopos de Nitrogênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massa de Íon Secundário/métodos , Staphylococcus aureus/metabolismo , Aminoácidos/metabolismo , Compostos de Amônio/química , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ácidos Graxos/biossíntese , Hidrogênio/metabolismo , Marcação por Isótopo/métodos , Nitrogênio/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento
11.
Biochim Biophys Acta ; 1827(8-9): 871-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23454059

RESUMO

Many metalloenzymes that inject and extract reducing equivalents at the beginning and the end of electron transport chains involved in chemiosmosis are suggested, through phylogenetic analysis, to have been present in the Last Universal Common Ancestor (LUCA). Their active centres are affine with the structures of minerals presumed to contribute to precipitate membranes produced on the mixing of hydrothermal solutions with the Hadean Ocean ~4 billion years ago. These mineral precipitates consist of transition element sulphides and oxides such as nickelian mackinawite ([Fe>Ni]2S2), a nickel-bearing greigite (~FeSS[Fe3NiS4]SSFe), violarite (~NiSS[Fe2Ni2S4]SSNi), a molybdenum bearing complex (~Mo(IV/VI)2Fe3S(0/2-)9) and green rust or fougerite (~[Fe(II)Fe(III)(OH)4](+)[OH](-)). They may be respectively compared with the active centres of Ni-Fe hydrogenase, carbon monoxide dehydrogenase (CODH), acetyl coenzyme-A synthase (ACS), the complex iron-sulphur molybdoenzyme (CISM) superfamily and methane monooxygenase (MMO). With the look of good catalysts - a suggestion that gathers some support from prebiotic hydrothermal experimentation - and sequestered by short peptides, they could be thought of as the original building blocks of proto-enzyme active centres. This convergence of the makeup of the LUCA-metalloenzymes with mineral structure and composition of hydrothermal precipitates adds credence to the alkaline hydrothermal (chemiosmotic) theory for the emergence of life, specifically to the possibility that the first metabolic pathway - the acetyl CoA pathway - was initially driven from either end, reductively from CO2 to CO and oxidatively and reductively from CH4 through to a methane thiol group, the two entities assembled with the help of a further thiol on a violarite cluster sequestered by peptides. By contrast, the organic coenzymes were entirely a product of the first metabolic pathways. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Assuntos
Metabolismo Energético , Enzimas/metabolismo , Metais/química , Biocatálise , Enzimas/química , Especificidade por Substrato
12.
J Bacteriol ; 195(17): 3940-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23813732

RESUMO

Using electron cryotomography, we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes high-density storage granules at the leading edges of engulfing membranes. The granules appear in the prespore and increase in size and number as engulfment proceeds. Typically, a cluster of 8 to 12 storage granules closely associates with the inner spore membrane and ultimately accounts for ∼7% of the total volume in mature spores. Energy-dispersive X-ray spectroscopy (EDX) analyses show that the granules contain high levels of phosphorus, oxygen, and magnesium and therefore are likely composed of polyphosphate (poly-P). Unlike the Gram-positive Bacilli and Clostridia, A. longum spores retain their outer spore membrane upon germination. To explore the possibility that the granules in A. longum may be involved in this unique process, we imaged purified Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Clostridium sporogenes spores. Even though B. cereus and B. thuringiensis contain the ppk and ppx genes, none of the spores from Gram-positive bacteria had granules. We speculate that poly-P in A. longum may provide either the energy or phosphate metabolites needed for outgrowth while retaining an outer membrane.


Assuntos
Polifosfatos/análise , Esporos Bacterianos/química , Esporos Bacterianos/crescimento & desenvolvimento , Veillonellaceae/química , Veillonellaceae/crescimento & desenvolvimento , Microscopia Crioeletrônica , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/ultraestrutura , Tomografia com Microscopia Eletrônica , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/ultraestrutura , Magnésio/análise , Oxigênio/análise , Espectrometria por Raios X , Esporos Bacterianos/ultraestrutura , Veillonellaceae/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 107(23): 10448-53, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20498089

RESUMO

The organometallic H cluster at the active site of [FeFe]-hydrogenase consists of a 2Fe subcluster coordinated by cyanide, carbon monoxide, and a nonprotein dithiolate bridged to a [4Fe-4S] cluster via a cysteinate ligand. Biosynthesis of this cluster requires three accessory proteins, two of which (HydE and HydG) are radical S-adenosylmethionine enzymes. The third, HydF, is a GTPase. We present here spectroscopic and kinetic studies of HydF that afford fundamental new insights into the mechanism of H-cluster assembly. Electron paramagnetic spectroscopy reveals that HydF binds both [4Fe-4S] and [2Fe-2S] clusters; however, when HydF is expressed in the presence of HydE and HydG (HydF(EG)), only the [4Fe-4S] cluster is observed by EPR. Insight into the fate of the [2Fe-2S] cluster harbored by HydF is provided by FTIR, which shows the presence of carbon monoxide and cyanide ligands in HydF(EG). The thorough kinetic characterization of the GTPase activity of HydF shows that activity can be gated by monovalent cations and further suggests that GTPase activity is associated with synthesis of the 2Fe subcluster precursor on HydF, rather than with transfer of the assembled precursor to hydrogenase. Interestingly, we show that whereas the GTPase activity is independent of the presence of the FeS clusters on HydF, GTP perturbs the EPR spectra of the clusters, suggesting communication between the GTP- and cluster-binding sites. Together, the results indicate that the 2Fe subcluster of the H cluster is synthesized on HydF from a [2Fe-2S] cluster framework in a process requiring HydE, HydG, and GTP.


Assuntos
Clostridium/enzimologia , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ferro/química , Ferro/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Enxofre/química , Enxofre/metabolismo
14.
ACS Omega ; 8(35): 32078-32089, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692207

RESUMO

Lignin, an abundant component of plant matter, can be depolymerized into renewable aromatic chemicals and biofuels but remains underutilized. Homogeneously catalyzed depolymerization in water has gained attention due to its economic feasibility and performance but suffers from inconsistently reported yields of bio-oil and solid residues. In this study, machine learning methods were used to develop predictive models for bio-oil and solid residue yields by using a few reaction variables and were subsequently validated by doing experimental work and comparing the predictions to the results. The models achieved a coefficient of determination (R2) score of 0.83 and 0.76, respectively, for bio-oil yield and solid residue. Variable importance for each model was calculated by two different methodologies and was tied to existing studies to explain the model predictive behavior. Based on the outcome of the study, the creation of concrete guidelines for reporting in lignin depolymerization studies was recommended. Shapley additive explanation value analysis reveals that temperature and reaction time are generally the strongest predictors of experimental outcomes compared to the rest.

15.
Front Microbiol ; 13: 960335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466646

RESUMO

Strýtan Hydrothermal Field (SHF) is a submarine system located in Eyjafördur in northern Iceland composed of two main vents: Big Strýtan and Arnarnesstrýtan. The vents are shallow, ranging from 16 to 70 m water depth, and vent high pH (up to 10.2), moderate temperature (T max ∼70°C), anoxic, fresh fluids elevated in dissolved silica, with slightly elevated concentrations of hydrogen and methane. In contrast to other alkaline hydrothermal vents, SHF is unique because it is hosted in basalt and therefore the high pH is not created by serpentinization. While previous studies have assessed the geology and geochemistry of this site, the microbial diversity of SHF has not been explored in detail. Here we present a microbial diversity survey of the actively venting fluids and chimneys from Big Strýtan and Arnarnesstrýtan, using 16S rRNA gene amplicon sequencing. Community members from the vent fluids are mostly aerobic heterotrophic bacteria; however, within the chimneys oxic, low oxygen, and anoxic habitats could be distinguished, where taxa putatively capable of acetogenesis, sulfur-cycling, and hydrogen metabolism were observed. Very few archaea were observed in the samples. The inhabitants of SHF are more similar to terrestrial hot spring samples than other marine sites. It has been hypothesized that life on Earth (and elsewhere in the solar system) could have originated in an alkaline hydrothermal system, however all other studied alkaline submarine hydrothermal systems to date are fueled by serpentinization. SHF adds to our understandings of hydrothermal vents in relationship to microbial diversity, evolution, and possibly the origin of life.

16.
Orig Life Evol Biosph ; 41(1): 35-50, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20407928

RESUMO

The origin of life necessitated the formation of catalytic functionalities in order to realize a number of those capable of supporting reactions that led to the proliferation of biologically accessible molecules and the formation of a proto-metabolic network. Here, the discussion of the significance of quantum behavior on biological systems is extended from recent hypotheses exploring brain function and DNA mutation to include origins of life considerations in light of the concept of quantum decoherence and the transition from the quantum to the classical. Current understandings of quantum systems indicate that in the context of catalysis, substrate-catalyst interaction may be considered as a quantum measurement problem. Exploration of catalytic functionality necessary for life's emergence may have been accommodated by quantum searches within metal sulfide compartments, where catalyst and substrate wave function interaction may allow for quantum based searches of catalytic phase space. Considering the degree of entanglement experienced by catalytic and non catalytic outcomes of superimposed states, quantum contributions are postulated to have played an important role in the operation of efficient catalysts that would provide for the kinetic basis for the emergence of life.


Assuntos
Catálise , Origem da Vida , Fenômenos Biomecânicos , Domínio Catalítico , Simulação por Computador , Cinética , Vida , Metais/química , Modelos Moleculares , Processos Fotoquímicos , Teoria Quântica , Sulfetos/química
17.
Microbes Environ ; 36(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470945

RESUMO

Roseilinea is a novel lineage of Chloroflexota known only from incomplete metagenome-assembled genomes (MAGs) and preliminary enrichments. Roseilinea is notable for appearing capable of anoxygenic photoheterotrophy despite being only distantly related to well-known phototrophs in the Chloroflexia class such as Chloroflexus and Roseiflexus. Here, we present a high-quality MAG of a member of Roseilinea, improving our understanding of the metabolic capacity and phylogeny of this genus, and resolving the multiple instances of horizontal gene transfer that have led to its metabolic potential. These data allow us to propose a candidate family for these organisms, Roseilineaceae, within the Anaerolineae class.


Assuntos
Chloroflexi/genética , Chloroflexi/metabolismo , Genoma Bacteriano , Sequência de Bases , Chloroflexi/classificação , Chloroflexi/isolamento & purificação , Transferência Genética Horizontal , Dados de Sequência Molecular , Processos Fototróficos , Filogenia
18.
Microbes Environ ; 36(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952861

RESUMO

Cyanobacteria thrive in diverse environments. However, questions remain about possible growth limitations in ancient environmental conditions. As a single genus, the Thermosynechococcus are cosmopolitan and live in chemically diverse habitats. To understand the genetic basis for this, we compared the protein coding component of Thermosynechococcus genomes. Supplementing the known genetic diversity of Thermosynechococcus, we report draft metagenome-assembled genomes of two Thermosynechococcus recovered from ferrous carbonate hot springs in Japan. We find that as a genus, Thermosynechococcus is genomically conserved, having a small pan-genome with few accessory genes per individual strain as well as few genes that are unique to the genus. Furthermore, by comparing orthologous protein groups, including an analysis of genes encoding proteins with an iron related function (uptake, storage or utilization), no clear differences in genetic content, or adaptive mechanisms could be detected between genus members, despite the range of environments they inhabit. Overall, our results highlight a seemingly innate ability for Thermosynechococcus to inhabit diverse habitats without having undergone substantial genomic adaptation to accommodate this. The finding of Thermosynechococcus in both hot and high iron environments without adaptation recognizable from the perspective of the proteome has implications for understanding the basis of thermophily within this clade, and also for understanding the possible genetic basis for high iron tolerance in cyanobacteria on early Earth. The conserved core genome may be indicative of an allopatric lifestyle-or reduced genetic complexity of hot spring habitats relative to other environments.


Assuntos
Genoma Bacteriano , Thermosynechococcus/genética , Thermosynechococcus/isolamento & purificação , Adaptação Fisiológica , Ecossistema , Genômica , Fontes Termais/microbiologia , Japão , Filogenia , Thermosynechococcus/classificação , Thermosynechococcus/fisiologia
19.
Microbes Environ ; 36(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34039816

RESUMO

We investigated variations in cell growth and ATP Sulfurylase (ATPS) activity when two cyanobacterial strains-Synechocystis sp. PCC6803 and Synechococcus sp. WH7803-were grown in conventional media, and media with low ammonium, low sulfate and a high CO2/low O2 atmosphere. In both organisms, a transition and adaptation to the reconstructed environmental media resulted in a decrease in ATPS activity. This variation appears to be decoupled from growth rate, suggesting the enzyme is not rate-limiting in S assimilation and raising questions about the role of ATPS redox regulation in cell physiology and throughout Earth history.


Assuntos
Proteínas de Bactérias/metabolismo , Sulfato Adenililtransferase/metabolismo , Synechococcus/enzimologia , Synechococcus/crescimento & desenvolvimento , Synechocystis/enzimologia , Synechocystis/crescimento & desenvolvimento , Compostos de Amônio/metabolismo , Proteínas de Bactérias/genética , Sulfato Adenililtransferase/genética , Sulfatos/metabolismo , Synechococcus/genética , Synechocystis/genética
20.
Dalton Trans ; 50(34): 11763-11774, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34346451

RESUMO

Under anaerobic conditions, ferrous iron reacts with sulfide producing FeS, which can then undergo a temperature, redox potential, and pH dependent maturation process resulting in the formation of oxidized mineral phases, such as greigite or pyrite. A greater understanding of this maturation process holds promise for the development of iron-sulfide catalysts, which are known to promote diverse chemical reactions, such as H+, CO2 and NO3- reduction processes. Hampering the full realization of the catalytic potential of FeS, however, is an incomplete knowledge of the molecular and redox processess ocurring between mineral and nanoparticulate phases. Here, we investigated the chemical properties of iron-sulfide by cyclic voltammetry, Raman and X-ray absorption spectroscopic techniques. Tracing oxidative maturation pathways by varying electrode potential, nanoparticulate n(Fe2+S2-)(s) was found to oxidize to a Fe3+ containing FeS phase at -0.5 V vs. Ag/AgCl (pH = 7). In a subsequent oxidation, polysulfides are proposed to give a material that is composed of Fe2+, Fe3+, S2- and polysulfide (Sn2-) species, with its composition described as Fe2+1-3xFe3+2xS2-1-y(Sn2-)y. Thermodynamic properties of model compounds calculated by density functional theory indicate that ligand oxidation occurs in conjunction with structural rearrangements, whereas metal oxidation may occur prior to structural rearrangement. These findings together point to the existence of a metastable FeS phase located at the junction of a metal-based oxidation path between FeS and greigite (Fe2+Fe3+2S2-4) and a ligand-based oxidation path between FeS and pyrite (Fe2+(S2)2-).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa