Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 164(1-2): 115-127, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771487

RESUMO

Branched actin networks--created by the Arp2/3 complex, capping protein, and a nucleation promoting factor--generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/química , Actinas/metabolismo , Fenômenos Biomecânicos , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Termodinâmica , Família de Proteínas da Síndrome de Wiskott-Aldrich/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
2.
Soft Matter ; 20(12): 2750-2766, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440846

RESUMO

DNA, which naturally occurs in linear, ring, and supercoiled topologies, frequently undergoes enzyme-driven topological conversion and fragmentation in vivo, enabling it to perform a variety of functions within the cell. In vitro, highly concentrated DNA polymers form entanglements that yield viscoelastic properties dependent on the topologies and lengths of the DNA. Enzyme-driven alterations of DNA size and shape therefore offer a means of designing active materials with programmable viscoelastic properties. Here, we incorporate multi-site restriction endonucleases into dense DNA solutions to linearize and fragment circular DNA molecules. We pair optical tweezers microrheology with differential dynamic microscopy and single-molecule tracking to measure the linear and nonlinear viscoelastic response and transport properties of entangled DNA solutions over a wide range of spatiotemporal scales throughout the course of enzymatic digestion. We show that, at short timescales, relative to the relaxation timescales of the polymers, digestion of these 'topologically-active' fluids initially causes an increase in elasticity and relaxation times followed by a gradual decrease. Conversely, for long timescales, linear viscoelastic moduli exhibit signatures of increasing elasticity. DNA diffusion, likewise, becomes increasingly slowed, in direct opposition to the short-time behavior. We hypothesize that this scale-dependent rheology arises from the population of small DNA fragments, which increases as digestion proceeds, driving self-association of larger fragments via depletion interactions, giving rise to slow relaxation modes of clusters of entangled chains, interspersed among shorter unentangled fragments. While these slow modes likely dominate at long times, they are presumably frozen out in the short-time limit, which instead probes the faster relaxation modes of the unentangled population.


Assuntos
DNA Circular , DNA , Elasticidade , Polímeros , Reologia
3.
Soft Matter ; 17(36): 8300-8307, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550150

RESUMO

Microcapsules allow for the controlled containment, transport, and release of cargoes ranging from pharmaceuticals to fragrances. Given the interest from a variety of industries in microcapsules and other core-shell structures, a multitude of fabrication strategies exist. Here, we report on a method relying on a mixture of temperature-responsive microgel particles, poly(N-isopropylacrylamide) (pNIPAM), and a polymer which undergo fluid-fluid phase separation. At room temperature this mixture separates into colloid-rich (liquid) and colloid-poor (gas) fluids. By heating the sample above a critical temperature where the microgel particles shrink dramatically and develop a more deeply attractive interparticle potential, the droplets of the colloid-rich phase become gel-like. As the temperature is lowered back to room temperature, these droplets of gelled colloidal particles reliquefy and phase separation within the droplet occurs. This phase separation leads to colloid-poor droplets within the colloid-rich droplets surrounded by a continuous colloid-poor phase. The gas/liquid/gas all-aqueous double emulsion lasts only a few minutes before a majority of the inner droplets escape. However, the colloid-rich shell of the core-shell droplets can solidify with the addition of salt. That this method creates core-shell structures with a shell composed of stimuli-sensitive microgel colloidal particles using only aqueous components makes it attractive for encapsulating biological materials and making capsules that respond to changes in, for example, temperature, salt concentration, or pH.


Assuntos
Polímeros , Água , Cápsulas , Emulsões , Temperatura
4.
Soft Matter ; 17(47): 10765-10776, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34792082

RESUMO

The cytoskeleton is a model active matter system that controls processes as diverse as cell motility and mechanosensing. While both active actomyosin dynamics and actin-microtubule interactions are key to the cytoskeleton's versatility and adaptability, an understanding of their interplay is lacking. Here, we couple microscale experiments with mechanistic modeling to elucidate how connectivity, rigidity, and force-generation affect emergent material properties in composite networks of actin, tubulin, and myosin. We use multi-spectral imaging, time-resolved differential dynamic microscopy and spatial image autocorrelation to show that ballistic contraction occurs in composites with sufficient flexibility and motor density, but that a critical fraction of microtubules is necessary to sustain controlled dynamics. The active double-network models we develop, which recapitulate our experimental findings, reveal that while percolated actomyosin networks are essential for contraction, only composites with comparable actin and microtubule densities can simultaneously resist mechanical stresses while supporting substantial restructuring. The comprehensive phase map we present not only provides important insight into the different routes the cytoskeleton can use to alter its dynamics and structure, but also serves as a much-needed blueprint for designing cytoskeleton-inspired materials that couple tunability with resilience and adaptability for diverse applications ranging from wound healing to soft robotics.


Assuntos
Citoesqueleto de Actina , Citoesqueleto , Actinas , Actomiosina , Miosinas
5.
Soft Matter ; 16(27): 6344-6353, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32555863

RESUMO

The cytoskeleton, a complex network of protein filaments and crosslinking proteins, dictates diverse cellular processes ranging from division to cargo transport. Yet, the role the cytoskeleton plays in the intracellular transport of DNA and other macromolecules remains poorly understood. Here, using single-molecule conformational tracking, we measure the transport and conformational dynamics of linear and relaxed circular (ring) DNA in composite networks of actin and microtubules with variable types of crosslinking. While both linear and ring DNA undergo anomalous, non-Gaussian, and non-ergodic subdiffusion, the detailed dynamics are controlled by both DNA topology (linear vs. ring) and crosslinking motif. Ring DNA swells, exhibiting heterogeneous subdiffusion controlled via threading by cytoskeleton filaments, while linear DNA compacts, exhibiting transport via caging and hopping. Importantly, while the crosslinking motif has little effect on ring DNA, linear DNA in networks with actin-microtubule crosslinking is significantly less ergodic and shows more heterogeneous transport than with actin-actin or microtubule-microtubule crosslinking.


Assuntos
Citoesqueleto de Actina , Biomimética , Actinas/genética , Citoesqueleto , DNA , Microtúbulos
6.
Soft Matter ; 16(28): 6683, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32639492

RESUMO

Correction for 'Anomalous and heterogeneous DNA transport in biomimetic cytoskeleton networks' by Jonathan Garamella et al., Soft Matter, 2020, DOI: 10.1039/d0sm00544d.

7.
Biomacromolecules ; 20(12): 4380-4388, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31687803

RESUMO

The diffusion of microscopic particles through the cell, important to processes such as viral infection, gene delivery, and vesicle transport, is largely controlled by the complex cytoskeletal network, comprised of semiflexible actin filaments and rigid microtubules, that pervades the cytoplasm. By varying the relative concentrations of actin and microtubules, the cytoskeleton can display a host of different structural and dynamic properties that, in turn, impact the diffusion of particles through the composite network. Here, we couple single-particle tracking with differential dynamic microscopy to characterize the transport of microsphere tracers diffusing through composite in vitro networks with varying ratios of actin and microtubules. We analyze multiple complementary metrics for anomalous transport to show that particles exhibit anomalous subdiffusion in all networks, which our data suggest arises from caging by networks. Further, subdiffusive characteristics are markedly more pronounced in actin-rich networks, which exhibit similarly more prominent viscoelastic properties compared to microtubule-rich composites. While the smaller mesh size of actin-rich composites compared to microtubule-rich composites plays an important role in these results, the rigidity of the filaments comprising the network also influences the anomalous characteristics that we observe. Our results suggest that as microtubules in our composites are replaced with actin filaments, the decreasing filament rigidity competes with increasing network connectivity to drive anomalous transport.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Animais , Coelhos
8.
Soft Matter ; 15(37): 7412-7419, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31465080

RESUMO

The interface between two fluids is roughened by thermally excited capillary waves. By using colloid-polymer systems which exhibit liquid-gas phase separation, the time and length scales of capillary waves become accessible to optical microscopy methods. Here, we study such a system using bright-field optical microscopy combined with a novel extension of differential dynamic microscopy. With differential dynamic microscopy, we analyze images in order to determine the decay time of interfacial fluctuations spanning wavevectors from 0.1 to 1 µm-1. We find capillary velocities on the order of 0.1 µm s-1 that depend on the sample composition in expected ways and that match values from the literature. This work demonstrates the first application of differential dynamic microscopy to the study of interfacial dynamics.

9.
Soft Matter ; 15(6): 1200-1209, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30543245

RESUMO

Crowding plays a key role in the transport and conformations of biological macromolecules. Gene therapy, viral infection, and transfection require DNA to traverse the crowded cytoplasm, including the cytoskeletal network of filamentous proteins. Given the complexity of cellular crowding, the dynamics of biological molecules can be highly dependent on the spatiotemporal scale probed. We present a powerful platform that spans molecular and cellular scales by coupling single-molecule conformational tracking (SMCT) and selective-plane illumination differential dynamic microscopy (SPIDDM). We elucidate the transport and conformational properties of large DNA, crowded by custom-designed networks of actin and microtubules, to link single-molecule conformations with ensemble DNA transport and cytoskeleton structure. We show that actin crowding leads to DNA compaction and suppression of fluctuations, combined with subdiffusion and heterogeneous transport, whereas microtubules have much more subdued impact across all scales. In composite networks of both filaments, scale-dependent effects emerge such that actin dictates ensemble DNA transport while microtubules influence single-molecule dynamics. We show that these intriguing results arise from a complex interplay between network rigidity, mesh size, filament concentration, and DNA size.


Assuntos
Citoesqueleto de Actina , Actinas , DNA , Microtúbulos , Transporte Biológico , Biomimética , Microscopia/métodos
10.
Opt Express ; 25(15): 17798-17810, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789271

RESUMO

Selective-plane illumination microscopy (SPIM) provides unparalleled advantages for the volumetric imaging of living organisms over extended times. However, the spatial configuration of a SPIM system often limits its compatibility with many widely used biological sample holders such as multi-well chambers and plates. To solve this problem, we developed a high numerical aperture (NA) open-top configuration that places both the excitation and detection objectives on the opposite of the sample coverglass. We carried out a theoretical calculation to analyze the structure of the system-induced aberrations. We then experimentally compensated the system aberrations using adaptive optics combined with static optical components, demonstrating near-diffraction-limited performance in imaging fluorescently labeled cells.


Assuntos
Microscopia/métodos , Óptica e Fotônica , Luz
11.
Opt Lett ; 42(22): 4603-4606, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140323

RESUMO

While numerous optical methods exist to probe the dynamics of biological or complex fluid samples, in recent years digital Fourier microscopy techniques such as differential dynamic microscopy have emerged as ways to efficiently combine elements of imaging and scattering methods. Here, we demonstrate, through experiments and simulations, how point-spread function engineering can be used to extend the reach of differential dynamic microscopy.

12.
Opt Express ; 24(18): 20881-94, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607692

RESUMO

Using light-sheet microscopy combined with digital Fourier methods we probe the dynamics of colloidal samples and DNA molecules. This combination, referred to as selective-plane illumination differential dynamic microscopy (SPIDDM), has the benefit of optical sectioning to study, with minimal photobleaching, thick samples allowing us to measure the diffusivity of colloidal particles at high volume fractions. Further, SPIDDM exploits the inherent spatially-varying thickness of Gaussian light-sheets. Where the excitation sheet is most focused, we capture high spatial frequency dynamics as the signal-to-background is high. In thicker regions, we capture the slower dynamics as diffusion out of the sheet takes longer.

13.
Soft Matter ; 12(43): 8958-8967, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27734049

RESUMO

Previous experiments have shown that spherical colloidal particles relax to equilibrium slowly after they adsorb to a liquid-liquid interface, despite the large interfacial energy gradient driving the adsorption. The slow relaxation has been explained in terms of transient pinning and depinning of the contact line on the surface of the particles. However, the nature of the pinning sites has not been investigated in detail. We use digital holographic microscopy to track a variety of colloidal spheres-inorganic and organic, charge-stabilized and sterically stabilized, aqueous and non-aqueous-as they breach liquid interfaces. We find that nearly all of these particles relax logarithmically in time over timescales much larger than those expected from viscous dissipation alone. By comparing our results to theoretical models of the pinning dynamics, we infer the area per defect to be on the order of a few square nanometers for each of the colloids we examine, whereas the energy per defect can vary from a few kT for non-aqueous and inorganic spheres to tens of kT for aqueous polymer particles. The results suggest that the likely pinning sites are topographical features inherent to colloidal particles-surface roughness in the case of silica particles and grafted polymer "hairs" in the case of polymer particles. We conclude that the slow relaxation must be taken into account in experiments and applications, such as Pickering emulsions, that involve colloids attaching to interfaces. The effect is particularly important for aqueous polymer particles, which pin the contact line strongly.

14.
Opt Express ; 23(12): 16142-53, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193587

RESUMO

We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips.


Assuntos
Aumento da Imagem/instrumentação , Microscopia Intravital/instrumentação , Iluminação/instrumentação , Refratometria/instrumentação , Manejo de Espécimes/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Imageamento Tridimensional/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Opt Lett ; 39(2): 275-8, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562125

RESUMO

Single-molecule switching based super-resolution microscopy techniques have been extended into three dimensions through various 3D single-molecule localization methods. However, the localization accuracy in z can be severely degraded by the presence of aberrations, particularly the spherical aberration introduced by the refractive index mismatch when imaging into an aqueous sample with an oil immersion objective. This aberration confines the imaging depth in most experiments to regions close to the coverslip. Here we show a method to obtain accurate, depth-dependent z calibrations by measuring the point spread function (PSF) at the coverslip surface, calculating the microscope pupil function through phase retrieval, and then computing the depth-dependent PSF with the addition of spherical aberrations. We demonstrate experimentally that this method can maintain z localization accuracy over a large range of imaging depths. Our super-resolution images of a mammalian cell nucleus acquired between 0 and 2.5 µm past the coverslip show that this method produces accurate z localizations even in the deepest focal plane.


Assuntos
Artefatos , Imageamento Tridimensional/métodos , Microscopia/métodos , Imagem Molecular/métodos , Animais , Calibragem , Linhagem Celular , DNA , Ratos
16.
STAR Protoc ; 5(3): 103249, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39120975

RESUMO

Here, we present a protocol for encapsulating DNA molecules under crowded conditions within cell-sized lipid-coated droplets. We describe steps for preparing a lipid-oil mixture and adding an aqueous solution containing DNA, which, when mixed, forms water-in-oil droplets of radii between ∼5 and 100 µm. We then detail procedures for quantifying the dynamics of DNA molecules in these droplets by analyzing fluorescence microscopy time series using differential dynamic microscopy. This protocol can be utilized to investigate DNA transport within a range of biomimetic and crowded environments. For complete details on the use and execution of this protocol, please refer to Aporvari et al.1.

17.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345245

RESUMO

Reconstituted cytoskeleton composites have emerged as a valuable model system for studying non-equilibrium soft matter. The faithful capture of the dynamics of these 3D, dense networks calls for optical sectioning, which is often associated with fluorescence confocal microscopes. However, recent developments in light-sheet fluorescence microscopy (LSFM) have established it as a cost-effective and, at times, superior alternative. To make LSFM accessible to cytoskeleton researchers less familiar with optics, we present a step-by-step beginner's guide to building a versatile light-sheet fluorescence microscope from off-the-shelf components. To enable sample mounting with traditional slide samples, this LSFM follows the single-objective light-sheet (SOLS) design, which utilizes a single objective for both the excitation and emission collection. We describe the function of each component of the SOLS in sufficient detail to allow readers to modify the instrumentation and design it to fit their specific needs. Finally, we demonstrate the use of this custom SOLS instrument by visualizing asters in kinesin-driven microtubule networks.


Assuntos
Citoesqueleto , Microtúbulos , Microscopia de Fluorescência
18.
Adv Mater ; 35(46): e2305824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500570

RESUMO

Polymer topology, which plays a principal role in the rheology of polymeric fluids, and non-equilibrium materials, which exhibit time-varying rheological properties, are topics of intense investigation. Here, composites of circular DNA and dextran are pushed out-of-equilibrium via enzymatic digestion of DNA rings to linear fragments. These time-resolved rheology measurements reveal discrete state-switching, with composites undergoing abrupt transitions between dissipative and elastic-like states. The gating time and lifetime of the elastic-like states, and the magnitude and sharpness of the transitions, are surprisingly decorrelated from digestion rates and non-monotonically depend on the DNA fraction. These results are modeled using sigmoidal two-state functions to show that bulk state-switching can arise from continuous molecular-level activity due to the necessity for cooperative percolation of entanglements to support macroscopic stresses. This platform, coupling the tunability of topological composites with the power of enzymatic reactions, may be leveraged for diverse material applications from wound-healing to self-repairing infrastructure.


Assuntos
DNA Circular , Dextranos , Reologia/métodos , Polímeros/química
19.
PNAS Nexus ; 2(8): pgad245, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575673

RESUMO

The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton's versatile reconfigurability, programmed by interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are limited largely to single force-generating components acting on a single substrate-far from the composite cytoskeleton in cells. Here, we engineer actin-microtubule (MT) composites, driven by kinesin and myosin motors and tuned by crosslinkers, to ballistically restructure and flow with speeds that span three orders of magnitude depending on the composite formulation and time relative to the onset of motor activity. Differential dynamic microscopy analyses reveal that kinesin and myosin compete to delay the onset of acceleration and suppress discrete restructuring events, while passive crosslinking of either actin or MTs has an opposite effect. Our minimal advection-diffusion model and spatial correlation analyses correlate these dynamics to structure, with motor antagonism suppressing reconfiguration and demixing, while crosslinking enhances clustering. Despite the rich formulation space and emergent formulation-dependent structures, the nonequilibrium dynamics across all composites and timescales can be organized into three classes-slow isotropic reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven advection and frictional drag. These general features of our platform facilitate applicability to other active matter systems and shed light on diverse ways that cytoskeletal components can cooperate or compete to enable wide-ranging cellular processes.

20.
Nat Mater ; 11(2): 138-42, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138792

RESUMO

Young's law predicts that a colloidal sphere in equilibrium with a liquid interface will straddle the two fluids, its height above the interface defined by an equilibrium contact angle. This has been used to explain why colloids often bind to liquid interfaces, and has been exploited in emulsification, water purification, mineral recovery, encapsulation and the making of nanostructured materials. However, little is known about the dynamics of binding. Here we show that the adsorption of polystyrene microspheres to a water/oil interface is characterized by a sudden breach and an unexpectedly slow relaxation. The relaxation appears logarithmic in time, indicating that complete equilibration may take months. Surprisingly, viscous dissipation appears to play little role. Instead, the observed dynamics, which bear strong resemblance to ageing in glassy systems, agree well with a model describing activated hopping of the contact line over nanoscale surface heterogeneities. These results may provide clues to longstanding questions on colloidal interactions at an interface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa