Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 53(1): 5, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407075

RESUMO

BACKGROUND: Importation of foreign genetics is a widely used genetic improvement strategy. However, even if the foreign genetic merit is currently greater than the domestic genetic merit, differences in foreign and domestic trends mean that the long-term competitiveness of an importation strategy cannot be guaranteed. Gene flow models are used to quantify the impact that a specific subpopulation, such as foreign genetics, can have over time on the genetic or economic benefit of a domestic industry. METHODS: We used a deterministic recursive gene flow model to predict the commercial performance of lambs born across various subpopulations. Numerous breeding strategies were evaluated by varying market share, proportions of rams selected for mating, genetic trend, superiority of foreign genetics over domestic genetics and frequency of importation. Specifically, an Ireland-New Zealand case study was simulated to quantify the potential gain that could be made by using foreign sire contributions (New Zealand) in a domestic sheep industry (Ireland). RESULTS: Genetic and economic gains were generated from alternative breeding strategies. The 'base scenario' (i.e. representing the current industry) predicted an average genetic merit value of €2.51 for lambs born and an annualised cumulative benefit of €45 million (m) after 20 years. Maximum genetic (€9.45 for lambs born) and economic (annualised cumulative benefit of €180 m after 20 years) benefits were achieved by implementing the 'PRO-intense-market scenario' which involved shifting market share away from conservative domestic breeders and reducing the proportion of rams that were selected for mating by progressive domestic breeders from the top 40% to the top 20%, without the use of any foreign genetics. The 'PROFOR scenario', which considered the use of foreign and progressive domestic genetics, predicted an average genetic merit value of €7.37 for lambs born and an annualised cumulative benefit of €144 m, after 20 years. CONCLUSIONS: Our results demonstrate that there is opportunity for a domestic industry to increase industry benefits without the use of foreign genetics but through an attempt to shift the market share away from conservative domestic breeders towards progressive domestic breeders. However, the importation and use of progressive foreign genetics may be an effective method to trigger a change in behaviour of conservative domestic breeders towards the use of progressive genetics.


Assuntos
Criação de Animais Domésticos/métodos , Custos e Análise de Custo , Hibridização Genética , Modelos Genéticos , Ovinos/genética , Criação de Animais Domésticos/economia , Animais , Feminino , Fluxo Gênico , Aptidão Genética , Masculino , Nova Zelândia
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38716561

RESUMO

Methane (CH4) produced from enteric fermentation is a potent greenhouse gas produced by ruminant animals. Multiple measurements are required across life stages to develop an understanding of how CH4 output changes throughout the animal's lifetime. The objectives of the current study were to estimate CH4 output across life stages in sheep and to investigate the relationship between CH4 output and dry matter (DM) intake (DMI). Data were generated on a total of 266 female Suffolk and Texel animals. Methane and carbon dioxide (CO2) output, estimated using portable accumulation chambers, and DMI, estimated using the n-alkane technique outdoors and using individual penning indoors, were quantified across the animal's life stage; as lambs (<12 mo), nulliparous hoggets (12 to 24 mo) and ewes (primiparous or greater; > 24 mo). Ewes were further classified as pregnant, lactating, and dry (non-pregnant and non-lactating). Multiple measurements were taken within and across the life stages of the same animals. A linear mixed model was used to determine if CH4 and CO2 output differed across life stages and using a separate linear mixed model the factors associated with CH4 output within each life stage were also investigated. Methane, CO2 output, and DMI differed by life stage (P < 0.05), with lactating ewes producing the greatest amount of CH4 (25.99 g CH4/d) and CO2 (1711.6 g CO2/d), while also having the highest DMI (2.18 kg DM/d). Methane output differed by live-weight of the animals across all life stages (P < 0.001). As ewe body condition score increased CH4 output declined (P < 0.05). Correlations between CH4 output measured across life stages ranged from 0.26 (SE 0.08; lambs and lactating ewes) to 0.59 (SE 0.06; hoggets and pregnant ewes), while correlations between CO2 output measured across life stages ranged from 0.12 (SE 0.06; lambs and hoggets) to 0.65 (SE 0.06; hoggets and lactating ewes). DMI was moderately correlated with CH4 (0.44; SE 0.04) and CO2 output (0.59; SE 0.03). Results from this study provide estimates of CH4 output across life stages in a pasture-based sheep production system and offer valuable information for the national inventory and the marginal abatement cost curve on the optimum time to target mitigation strategies.


Obtaining accurate estimates of methane (CH4) output across life stages is important to assess how CH4 output changes throughout the production cycle in pasture-based sheep production systems. This study investigated the factors associated with CH4 output at each life stage (lambs, hoggets, pregnant, lactating, and dry ewes), the relationship between CH4 output measured across life stages and the relationship between CH4 output and dry matter intake (DMI) in an Irish lowland sheep production system. Methane and carbon dioxide (CO2) output and DMI were measured on 266 purebred Suffolk and Texel females across their lifetime. Lactating ewes produced the highest CH4 and CO2 output, along with having the highest DMI. Across all life stages, CH4 output increased with increasing live weight while CH4 output decreased as body condition score increased. Weak to moderate relationships were found between CH4 output measured across life stages, with the strength of the relationship decreasing as the time between life stages increased. A positive relationship was found between DMI and CH4 output. Results from this study lead to the development of a profile of CH4 output across the production cycle of a pasture-based sheep system.


Assuntos
Dióxido de Carbono , Lactação , Metano , Animais , Metano/metabolismo , Feminino , Ovinos/crescimento & desenvolvimento , Ovinos/fisiologia , Dióxido de Carbono/metabolismo , Lactação/fisiologia , Gravidez
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206107

RESUMO

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Assuntos
Dieta , Metano , Ovinos , Animais , Feminino , Metano/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ruminantes , Silagem/análise , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo , Óleo de Soja/metabolismo , Extratos Vegetais , Fermentação , Ração Animal/análise , Lactação , Digestão
4.
Animals (Basel) ; 13(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760308

RESUMO

The objective of this study was to simulate and assess the profitability of sheep production systems that varied in maternal genetic merit (high or low) and country of origin (New Zealand (NZ) or Ireland), using the Teagasc Lamb Production Model (TLPM). A production system study performed at Teagasc Athenry, Co. Galway, Ireland, from 2016 to 2019, inclusive, provided key animal performance input parameters, which were compared across three scenarios: high maternal genetic merit NZ (NZ), high maternal genetic merit Irish (High Irish) and low maternal genetic merit Irish (Low Irish). Prior to the beginning of the study ewes and rams were imported from New Zealand to Ireland in order to compare animals within the same management system. Ewes were selected based on the respective national maternal genetic indexes; i.e., either the New Zealand Maternal Worth (NZ group) or the €uro-star Replacement index (Irish groups). The TLPM was designed to simulate the impact of changes in physical and technical outputs (such as number of lambs, drafting rates and replacement rates) on a range of economic parameters including variable costs, fixed costs, gross margin and net profit. Results showed that total farm costs (variable and fixed) were similar across the three scenarios, driven by the similar number of ewes in each scenario. The number of lambs produced and the cost of production per lamb was 14.05 lambs per hectare for the NZ scenario at a cost of EUR 82.35 per lamb, 11.40 lambs per hectare for the High Irish scenario at a cost of EUR 101.42 per lamb and 11.00 lambs per hectare for the Low Irish scenario at a cost of EUR 105.72 per lamb. The net profit of the three scenarios was EUR 514, EUR 299, and EUR 258 per hectare, for the NZ, High Irish and Low Irish scenarios, respectively. Overall, the NZ scenario had a lower cost of production in comparison to either Irish group, while the High Irish scenario had a 14% greater net profit than the Low Irish scenario, equating to an additional EUR 41 per hectare net profit. Output from this simulation model reiterates the importance, for overall farm profitability, of maximising the number of lambs weaned per hectare, particularly through maximising income and diluting the total farm costs. To conclude, the use of high-maternal-genetic-merit animals, regardless of their country of origin impacts farm profitability.

5.
Transl Anim Sci ; 5(3): txab070, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34377949

RESUMO

The objective of this study was to investigate the impact of the ewe's maternal genetic merit and country of origin [New Zealand (NZ) or Ireland] on ewe reproductive, lambing, and productivity traits. The study was performed over a 4-yr period (2016-2019) and consisted of three genetic groups: high maternal genetic merit (NZ), high maternal genetic merit Irish (High Irish), and low maternal genetic merit Irish (Low Irish) ewes. Each group contained 30 Suffolk and 30 Texel ewes, selected based on the respective national maternal genetic indexes; i.e., either the NZ Maternal Worth (NZ group) or the €uro-star Replacement index (Irish groups). The impact of maternal genetic merit on reproductive traits such as litter size; lambing traits such as gestation length, birth weight, lambing difficulty, mothering ability; and productivity traits such as the number of lambs born and weaned was analyzed using linear mixed models. For binary traits, the impact of maternal genetic merit on reproductive traits such as conception to first artificial insemination (AI) service; lambing traits such as dystocia and perinatal lamb mortality; and productivity traits such as ewe survival was analyzed using logistic regression. NZ ewes outperformed Low Irish ewes for conception to first AI (P < 0.05) and litter size (P = 0.05). Irish ewes were more likely to suffer from dystocia [6.84 (High Irish) and 8.25 (Low Irish) times] compared to NZ ewes (P < 0.001); birth weight and perinatal mortality did not differ between groups (P > 0.05). Lambs born from NZ ewes were 4.67 [95% confidence interval (CI): 1.89-11.55; P < 0.001] and 6.54 (95% CI: 2.56-16.71; P<0.001) times more likely to stand up and suckle unassisted relative to lambs born from High or Low Irish ewes, respectively. NZ and High Irish ewes had a greater number of lambs born and weaned throughout the duration of the study compared to their Low Irish counterparts (P<0.001). NZ ewes tended to be more likely to survive from one year to the next compared with Low Irish ewes (P=0.07). Irish ewes of high maternal genetic merit outperformed their low counterparts in total number of lambs born and weaned per ewe, but performance did not differ across other traits investigated. This highlights the importance of continuous development of the Irish maternal sheep index to ensure favorable improvements in reproductive, lambing, and productivity traits at the farm level. Overall, results demonstrate the suitability of NZ genetics in an Irish production system.

6.
J Anim Sci ; 99(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673961

RESUMO

The aim of this study was to investigate the impact of ewe genetic merit on ewe performance and efficiency parameters. The study consisted of three genetic merit groups (New Zealand [NZ], High Irish, and Low Irish) and ran from 2016 to 2019, inclusive. Each genetic merit group contained 30 purebred Suffolk and 30 purebred Texel ewes, which were selected based on their maternal genetic indexes in their country of origin, namely Ireland (€uro-star Replacement index) or New Zealand (New Zealand Maternal worth). Ewe body condition score (BCS), ewe body weight (BW), milk yield, milk composition, dry matter intake (DMI), and efficiency parameters were all analyzed using linear mixed models. Ewe BW was similar across all genetic merit groups at each time point (P > 0.05). In comparison to both High and Low Irish ewes, NZ ewes had a higher BCS at mating, mid-pregnancy, lambing, week 10 post-lambing (PL, P < 0.05). Ewe BW change was similar across genetic merit groups, except between mating and mid-pregnancy where ewe BW loss was greater for NZ ewes than Irish ewes (P < 0.05) and between weeks 6 PL and 10 PL, where NZ ewes gained BW and High and Low Irish ewes lost BW (P < 0.01). Ewe milk yield, milk fat, total solids, and gross energy content were superior for milk produced by NZ ewes at week 6 PL in comparison to milk produced by High Irish and Low Irish ewes (P < 0.01). NZ ewes produced a greater quantity of milk solids/kg of BW at week 6 PL compared with High Irish ewes (P < 0.01), whereas Low Irish ewes did not differ from either NZ or High Irish (P > 0.05). Low Irish ewes had a greater daily DMI than High Irish ewes in late lactation (week 10 PL, P < 0.05) and had a greater DMI/kg of ewe BW compared with the High Irish ewes at the same time point (P < 0.05). NZ ewes weaned a litter BW equivalent to 60.4% of their mating BW, which was more than the Low Irish ewes who weaned 57.1% of the ewe's BW at mating (P < 0.01), whereas the High Irish ewes did not differ from either the NZ or Low Irish ewes at 59.3% of the ewe's BW at mating (P > 0.05). This study presents a range of parameters across ewes of high and low genetic merit, demonstrating the ability to achieve gains through selection of animals of high genetic merit. Sheep producers should consider genetic indexes as a tool to assist in the decision-making process of selecting replacement ewes and/or breeding rams, once satisfied the animal is correct, and meeting the breeding objectives of the system.


Assuntos
Lactação , Leite , Animais , Peso Corporal , Feminino , Masculino , Gravidez , Reprodução , Ovinos/genética , Desmame
7.
J Anim Sci ; 99(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34417802

RESUMO

Portable accumulation chambers (PAC) enable short-term spot measurements of gaseous emissions including methane (CH4), carbon dioxide (CO2), and oxygen (O2) consumption from small ruminants. To date the differences in morning and evening gaseous measurements in the PAC have not been investigated. The objectives of this study were to investigate: 1) the optimal measurement time in the PAC, 2) the appropriate method of accounting for the animal's size when calculating the animal's gaseous output, and 3) the intra-day variability of gaseous measurements. A total of 12 ewe lambs (c. 10 to 11 months of age) were randomly selected each day from a cohort of 48 animals over nine consecutive days. Methane emissions from the 12 lambs were measured in 12 PAC during two measurement runs daily, AM (8 to 10 h) and PM (14 to 16 h). Animals were removed from Perennial ryegrass silage for at least 1 h prior to measurements in the PAC and animals were assigned randomly to each of the 12 chambers. Methane (ppm) concentration, O2 and CO2 percentage were measured at 5 time points (T1 = 0.0 min, T2 = 12.5 min, T3 = 25.0 min, T4 = 37.5 min, and T5 = 50.0 min from entry of the first animal into the first chamber) using an Eagle 2 monitor. The correlation between time points T5-T1 (i.e., 50 min minus 0 min after entry of the animal to the chamber) and T4-T1 was 0.95, 0.92, and 0.77 for CH4, O2, and CO2, respectively (P < 0.01). The correlation between CH4 and CO2 output and O2 consumption, calculated with live-weight and with body volume was 0.99 (P < 0.001). The correlation between the PAC measurement recorded on the same animal in the AM and PM measurement runs was 0.73. Factors associated with CH4 production included: day and time of measurement, the live-weight of the animal and the hourly relative humidity. Results from this study suggest that the optimal time for measuring an animal's gaseous output in the PAC is 50 min, that live-weight should be used in the calculation of gaseous output from an animal and that the measurement of an animal's gaseous emissions in either the AM or PM does not impact on the ranking of animals when gaseous emissions are measured using the feeding and measurement protocol outlined in the present study.


Assuntos
Dióxido de Carbono , Metano , Animais , Feminino , Monitorização Fisiológica , Ruminantes , Ovinos
8.
J Anim Sci ; 99(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637520

RESUMO

Portable accumulation chambers (PACs) enable gaseous emissions from small ruminants to be measured over a 50-min period; to date, however, the repeatability of consecutive days of measurement in the PAC has not been investigated. The objectives of this study were 1) to investigate the repeatability of consecutive days of gaseous measurements in the PAC, 2) to determine the number of days required to achieve precise gaseous measurements, and 3) to develop a prediction equation for gaseous emissions in sheep. A total of 48 ewe lambs (c. 10 to 11 mo of age) were randomly divided into four measurement groups each day, for 17 consecutive days. Gaseous measurements were conducted between 0800 and 1200 hours daily. Animals were removed from perennial ryegrass silage for at least 1 h before measurements in the PAC, and animals were assigned randomly to each of the 12 chambers. Methane (CH4; ppm) concentration, oxygen (O2; %), and carbon dioxide (CO2; %) were measured at three time points (0, 25, and 50 min after entry of the first animal into the first chamber). To quantify the effect of animal and day variation on gaseous emissions, between-animal, between-day, and error variances were calculated for each gaseous measurement using a linear mixed model. The number of days required to gain a certain precision (defined as the 95% confidence interval range) for each gaseous measurement was also calculated. For all three gases, the between-day variance (39% to 40%) accounted for a larger proportion of total variance compared with between-animal variance, while the repeatability of 17 consecutive days of measurement was 0.36, 0.31, and 0.23 for CH4, CO2, and O2, respectively. Correlations between consecutive days of measurement were strong for all three gases; the strongest correlation between day 1 and the remaining days for CH4, CO2, and O2 was 0.71 (days 1 and 6), 0.77 (days 1 and 2), and 0.83 (days 1 and 5), respectively. A high level of precision was achieved when gaseous measurements from PAC were taken over three consecutive days. The prediction equation overestimated gaseous production for all three gases: the correlations between actual and predicted gaseous output ranged from 0.67 to 0.71, with the r2 ranging from 0.45 to 0.71. The results from this study will aid the refinement of the protocol for the measurement of gaseous emissions in sheep using the PAC.


Assuntos
Metano , Silagem , Animais , Dióxido de Carbono , Feminino , Ruminantes , Ovinos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa