Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(34): E2258-66, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22829665

RESUMO

We show that after tail amputation in Ambystoma mexicanum (Axolotl) the correct number and spacing of dorsal root ganglia are regenerated. By transplantation of spinal cord tissue and nonclonal neurospheres, we show that the central spinal cord represents a source of peripheral nervous system cells. Interestingly, melanophores migrate from preexisting precursors in the skin. Finally, we demonstrate that implantation of a clonally derived spinal cord neurosphere can result in reconstitution of all examined cell types in the regenerating central spinal cord, suggesting derivation of a cell with spinal cord stem cell properties.


Assuntos
Sistema Nervoso Central/fisiologia , Sistema Nervoso Periférico/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Sequência de Aminoácidos , Animais , Gânglios Espinais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Medula Espinal/citologia , Células-Tronco/citologia , Urodelos
2.
Stem Cell Reports ; 10(6): 1751-1765, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29779899

RESUMO

In the developing nervous system, neural stem cells are polarized and maintain an apical domain facing a central lumen. The presence of apical membrane is thought to have a profound influence on maintaining the stem cell state. With the onset of neurogenesis, cells lose their polarization, and the concomitant loss of the apical domain coincides with a loss of the stem cell identity. Little is known about the molecular signals controlling apical membrane size. Here, we use two neuroepithelial cell systems, one derived from regenerating axolotl spinal cord and the other from human embryonic stem cells, to identify a molecular signaling pathway initiated by lysophosphatidic acid that controls apical membrane size and consequently controls and maintains epithelial organization and lumen size in neuroepithelial rosettes. This apical domain size increase occurs independently of effects on proliferation and involves a serum response factor-dependent transcriptional induction of junctional and apical membrane components.


Assuntos
Autorrenovação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Neurogênese , Transdução de Sinais , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Membrana Celular/metabolismo , Polaridade Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Imunofluorescência , Expressão Gênica , Humanos , Lisofosfolipídeos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células Neuroepiteliais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas , Transcrição Gênica
3.
Methods Mol Biol ; 916: 197-202, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22914942

RESUMO

Urodele amphibians such as axolotl are well known for their regenerative potential of the damaged central nervous system structures. Upon tail amputation, neural stem cells behind the amputation plane undergo self-renewing divisions and contribute to the functional spinal cord in the newly formed regenerate. The neural stem cells, harboring this potential, can be isolated from the animal and cultured under the suspension conditions. After 2-3 weeks in vitro they will proliferate and form the floating aggregates of the spherical shape, so-called neurospheres. Reimplanted back into the animal, the neurospheres can efficiently integrate in the spinal cord lesion and contribute to the following spinal cord regeneration events. Here we demonstrate the unique method of the axolotl tail spinal cord regeneration from the implanted neurosphere.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Regeneração , Medula Espinal/citologia , Medula Espinal/fisiologia , Transplante de Células-Tronco/métodos , Cauda/fisiologia , Ambystoma mexicanum , Amputação Cirúrgica , Animais , Técnicas de Cultura de Células , Proliferação de Células , Separação Celular , Cauda/cirurgia
4.
Development ; 134(11): 2083-93, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17507409

RESUMO

Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluorescent protein-positive (GFP(+)) spinal cord we show that a 500 microm region adjacent to the amputation plane generates the neural progenitors for regeneration. We further tracked single nuclear-GFP-labeled cells as they proliferated during regeneration, observing their spatial distribution, and ultimately their expression of the progenitor markers PAX7 and PAX6. Most progenitors generate descendents that expand along the anterior/posterior (A/P) axis, but remain close to the dorsal/ventral (D/V) location of the parent. A minority of clones spanned multiple D/V domains, taking up differing molecular identities, indicating that cells can execute multipotency in vivo. In parallel experiments, bulk labeling of dorsally or ventrally restricted progenitor cells revealed that ventral cells at the distal end of the regenerating spinal cord switch to dorsal cell fates. Analysis of PAX7 and PAX6 expression along the regenerating spinal cord indicated that these markers are expressed in dorsal and lateral domains all along the spinal cord except at the distal terminus. These results suggest that neural progenitor identity is destabilized or altered in the terminal vesicle region, from which clear migration of cells into the surrounding blastema is also observed.


Assuntos
Ambystoma , Diferenciação Celular/fisiologia , Células-Tronco Multipotentes/citologia , Regeneração/fisiologia , Medula Espinal/fisiologia , Animais , Linhagem da Célula , Movimento Celular/fisiologia , Crioultramicrotomia , Eletroporação , Proteínas do Olho/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX6 , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Medula Espinal/citologia , Medula Espinal/transplante
5.
Dev Dyn ; 236(2): 389-403, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17183528

RESUMO

Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at pre- and early-migratory stages revealed that individual neural crest cells migrate away from the neural tube along two main routes: first, dorsolaterally between the epidermis and somites and, later, ventromedially between the somites and neural tube/notochord. Dorsolaterally migrating crest primarily forms pigment cells, with those from anterior (but not mid or posterior) trunk neural folds also contributing glia and neurons to the lateral line. White mutants have impaired dorsolateral but normal ventromedial migration. At late migratory stages, most labeled cells move along the ventromedial pathway or into the dorsal fin. Contrasting with other anamniotes, axolotl has a minor neural crest contribution to the dorsal fin, most of which arises from the dermomyotome. Taken together, the results reveal stereotypic migration and differentiation of neural crest cells in axolotl that differ from other vertebrates in timing of entry onto the dorsolateral pathway and extent of contribution to some derivatives.


Assuntos
Ambystoma/embriologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Crista Neural/embriologia , Animais , Carbocianinas , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal , Microscopia de Fluorescência , Crista Neural/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa