Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2204075121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306482

RESUMO

Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.


Assuntos
Diatomáceas , Haptófitas , Haptófitas/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Ecossistema , Fitoplâncton/metabolismo , Diatomáceas/genética , Vitaminas/metabolismo , Micronutrientes/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(37): e2200014119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067300

RESUMO

Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.


Assuntos
Proteínas Arqueais , Proteínas de Bactérias , Microbiota , Nitrificação , Água do Mar , Archaea/classificação , Archaea/enzimologia , Proteínas Arqueais/análise , Bactérias/classificação , Bactérias/enzimologia , Proteínas de Bactérias/análise , Biodiversidade , Nitrito Redutases/metabolismo , Oceano Pacífico , Proteômica/métodos , Água do Mar/microbiologia
3.
Proc Natl Acad Sci U S A ; 117(27): 15740-15747, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576688

RESUMO

Despite very low concentrations of cobalt in marine waters, cyanobacteria in the genus Prochlorococcus retain the genetic machinery for the synthesis and use of cobalt-bearing cofactors (cobalamins) in their genomes. We explore cobalt metabolism in a Prochlorococcus isolate from the equatorial Pacific Ocean (strain MIT9215) through a series of growth experiments under iron- and cobalt-limiting conditions. Metal uptake rates, quantitative proteomic measurements of cobalamin-dependent enzymes, and theoretical calculations all indicate that Prochlorococcus MIT9215 can sustain growth with less than 50 cobalt atoms per cell, ∼100-fold lower than minimum iron requirements for these cells (∼5,100 atoms per cell). Quantitative descriptions of Prochlorococcus cobalt limitation are used to interpret the cobalt distribution in the equatorial Pacific Ocean, where surface concentrations are among the lowest measured globally but Prochlorococcus biomass is high. A low minimum cobalt quota ensures that other nutrients, notably iron, will be exhausted before cobalt can be fully depleted, helping to explain the persistence of cobalt-dependent metabolism in marine cyanobacteria.


Assuntos
Organismos Aquáticos/metabolismo , Cobalto/metabolismo , Prochlorococcus/metabolismo , Vitamina B 12/metabolismo , Biomassa , Genoma Bacteriano/genética , Ferro/metabolismo , Oceano Pacífico , Filogenia , Prochlorococcus/genética , Prochlorococcus/crescimento & desenvolvimento , Proteômica , Água do Mar/química , Vitamina B 12/genética
4.
J Proteome Res ; 21(1): 77-89, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855411

RESUMO

Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.


Assuntos
Cianobactérias , Trichodesmium , Cianobactérias/metabolismo , Biomarcadores Ambientais , Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Trichodesmium/genética , Trichodesmium/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(33): 16448-16453, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346083

RESUMO

Reactive oxygen species (ROS) like superoxide drive rapid transformations of carbon and metals in aquatic systems and play dynamic roles in biological health, signaling, and defense across a diversity of cell types. In phytoplankton, however, the ecophysiological role(s) of extracellular superoxide production has remained elusive. Here, the mechanism and function of extracellular superoxide production by the marine diatom Thalassiosira oceanica are described. Extracellular superoxide production in T. oceanica exudates was coupled to the oxidation of NADPH. A putative NADPH-oxidizing flavoenzyme with predicted transmembrane domains and high sequence similarity to glutathione reductase (GR) was implicated in this process. GR was also linked to extracellular superoxide production by whole cells via quenching by the flavoenzyme inhibitor diphenylene iodonium (DPI) and oxidized glutathione, the preferred electron acceptor of GR. Extracellular superoxide production followed a typical photosynthesis-irradiance curve and increased by 30% above the saturation irradiance of photosynthesis, while DPI significantly impaired the efficiency of photosystem II under a wide range of light levels. Together, these results suggest that extracellular superoxide production is a byproduct of a transplasma membrane electron transport system that serves to balance the cellular redox state through the recycling of photosynthetic NADPH. This photoprotective function may be widespread, consistent with the presence of putative homologs to T. oceanica GR in other representative marine phytoplankton and ocean metagenomes. Given predicted climate-driven shifts in global surface ocean light regimes and phytoplankton community-level photoacclimation, these results provide implications for future ocean redox balance, ecological functioning, and coupled biogeochemical transformations of carbon and metals.


Assuntos
Diatomáceas/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Superóxidos/metabolismo , Carbono/metabolismo , Diatomáceas/genética , Transporte de Elétrons/genética , NADP/genética , NADP/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema II/genética , Fitoplâncton/genética , Fitoplâncton/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Proteome Res ; 20(9): 4589-4597, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34384028

RESUMO

Metaproteomics is a powerful analytical approach that can assess the functional capabilities deployed by microbial communities in both environmental and biomedical microbiome settings. Yet, the mass spectra resulting from these mixed biological communities are challenging to obtain due to the high number of low intensity peak features. The use of multiple dimensions of chromatographic separation prior to mass spectrometry analyses has been applied to proteomics previously but can require increased sampling handling and instrument time. Here, we demonstrate an automated online comprehensive active modulation two-dimensional liquid chromatography method for metaproteome sample analysis. A high pH PLRP-S column was used in the first dimension followed by low pH separation in the second dimension using dual modulating C18 traps and a C18 column. This method increased the number of unique peptides found in ocean metaproteome samples by more than 50% when compared to a one-dimension separation while using the same amount of sample and instrument time.


Assuntos
Cromatografia de Fase Reversa , Microbiota , Espectrometria de Massas , Peptídeos , Proteômica
7.
J Proteome Res ; 18(4): 1461-1476, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702898

RESUMO

Ocean metaproteomics is an emerging field enabling discoveries about marine microbial communities and their impact on global biogeochemical processes. Recent ocean metaproteomic studies have provided insight into microbial nutrient transport, colimitation of carbon fixation, the metabolism of microbial biofilms, and dynamics of carbon flux in marine ecosystems. Future methodological developments could provide new capabilities such as characterizing long-term ecosystem changes, biogeochemical reaction rates, and in situ stoichiometries. Yet challenges remain for ocean metaproteomics due to the great biological diversity that produces highly complex mass spectra, as well as the difficulty in obtaining and working with environmental samples. This review summarizes the progress and challenges facing ocean metaproteomic scientists and proposes best practices for data sharing of ocean metaproteomic data sets, including the data types and metadata needed to enable intercomparisons of protein distributions and annotations that could foster global ocean metaproteomic capabilities.


Assuntos
Disseminação de Informação/métodos , Oceanos e Mares , Proteômica , Microbiologia da Água , Bases de Dados de Proteínas , Humanos , Metagenômica
8.
Proc Natl Acad Sci U S A ; 113(50): 14237-14242, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911777

RESUMO

Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle.


Assuntos
Ferro/metabolismo , Água do Mar/análise , Água do Mar/microbiologia , Sideróforos/metabolismo , Adaptação Fisiológica , Disponibilidade Biológica , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genes Bacterianos , Ferro/farmacocinética , Ligantes , Oceano Pacífico , Filogenia , Microbiologia da Água
9.
Environ Microbiol ; 20(8): 3109-3126, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30117243

RESUMO

Diatoms are a highly successful group of photosynthetic protists that often thrive under adverse environmental conditions. Members of the genus Pseudo-nitzschia are ecologically important diatoms which are able to subsist during periods of chronic iron limitation and form dense blooms following iron fertilization events. The cellular strategies within diatoms that orchestrate these physiological responses to variable iron concentrations remain largely uncharacterized. Using a combined transcriptomic and proteomic approach, we explore the exceptional ability of a diatom isolated from the iron-limited Northeast Pacific Ocean to reorganize its intracellular processes as a function of iron. We compared the molecular responses of Pseudo-nitzschia granii observed under iron-replete and iron-limited growth conditions to those of other model diatoms. Iron-coordinated molecular responses demonstrated some agreement between gene expression and protein abundance, including iron-starvation-induced-proteins, a putative iron transport system and components of photosynthesis and the Calvin cycle. Pseudo-nitzschia granii distinctly differentially expresses genes encoding proteins involved in iron-independent photosynthetic electron transport, urea acquisition and vitamin synthesis. We show that P. granii is unique among studied diatoms in its physiology stemming from distinct cellular responses, which may underlie its ability to subsist in low iron regions and rapidly bloom to outcompete other diatom taxa following iron enrichment.


Assuntos
Diatomáceas/genética , Diatomáceas/metabolismo , Ferro/metabolismo , Diatomáceas/classificação , Diatomáceas/isolamento & purificação , Transporte de Elétrons , Oceano Pacífico , Fotossíntese , Proteômica , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 112(32): 9944-9, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216989

RESUMO

Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regimes. Synechococcus strain WH8102, from a region in the southern Sargasso Sea that receives substantial dust deposition, showed impaired growth and photophysiology as Fe declined, yet used few acclimation responses. Coastal WH8020, from the dynamic, seasonally variable New England shelf, displayed a multitiered, hierarchical cascade of acclimation responses with different Fe thresholds. The multitiered response included changes in Fe acquisition, storage, and photosynthetic proteins, substitution of flavodoxin for ferredoxin, and modified photophysiology, all while maintaining remarkably stable growth rates over a range of Fe concentrations. Modulation of two distinct ferric uptake regulator (Fur) proteins that coincided with the multitiered proteome response was found, implying the coastal strain has different regulatory threshold responses to low Fe availability. Low nitrogen (N) and phosphorus (P) availability in the open ocean may favor the loss of Fe response genes when Fe availability is consistent over time, whereas these genes are retained in dynamic environments where Fe availability fluctuates and N and P are more abundant.


Assuntos
Ecossistema , Ferro/farmacologia , Synechococcus/fisiologia , Oceano Atlântico , Proteínas de Bactérias/metabolismo , Geografia , Fotossíntese/efeitos dos fármacos , Synechococcus/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 112(4): 1173-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25587132

RESUMO

Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name "Candidatus Nitrosopelagicus brevis" str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.


Assuntos
Archaea , Proteínas Arqueais , Regulação da Expressão Gênica em Archaea/fisiologia , Proteoma , Proteômica , Microbiologia da Água , Sequência de Aminoácidos , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/biossíntese , Proteínas Arqueais/genética , Metagenômica , Dados de Sequência Molecular , Oceanos e Mares , Proteoma/biossíntese , Proteoma/genética
12.
Environ Microbiol ; 19(6): 2348-2365, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371229

RESUMO

Marine Synechococcus thrive over a range of light regimes in the ocean. We examined the proteomic, genomic and physiological responses of seven Synechococcus isolates to moderate irradiances (5-80 µE m-2 s-1 ), and show that Synechococcus spans a continuum of light responses ranging from low light optimized (LLO) to high light optimized (HLO). These light responses are linked to phylogeny and pigmentation. Marine sub-cluster 5.1A isolates with higher phycouribilin: phycoerythrobilin ratios fell toward the LLO end of the continuum, while sub-cluster 5.1B, 5.2 and estuarine Synechococcus with less phycouribilin fell toward the HLO end of the continuum. Global proteomes were highly responsive to light, with > 50% of abundant proteins varying more than twofold between the lowest and highest irradiance. All strains downregulated phycobilisome proteins with increasing irradiance. Regulation of proteins involved in photosynthetic electron transport, carbon fixation, oxidative stress protection (superoxide dismutases) and iron and nitrogen metabolism varied among strains, as did the number of high light inducible protein (Hlip) and DNA photolyase genes in their genomes. All but one LLO strain possessed the photoprotective orange carotenoid protein (OCP). The unique combinations of light responses in each strain gives rise to distinct photophysiological phenotypes that may affect Synechococcus distributions in the ocean.


Assuntos
Transporte de Elétrons/genética , Fotossíntese/genética , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Synechococcus/genética , Synechococcus/fisiologia , Urobilina/análogos & derivados , Adaptação Ocular , Ciclo do Carbono/genética , Luz , Estresse Oxidativo/genética , Ficobilissomas/metabolismo , Filogenia , Proteômica , Synechococcus/isolamento & purificação , Urobilina/metabolismo
13.
Proteomics ; 15(20): 3521-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26097212

RESUMO

Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial diversity in many locales presents us with unique challenges. We addressed this challenge with a targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared (redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8 ± 1.9% of their tryptic peptides, while shared intraspecies peptides were higher, 13 ± 15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ∼4 × 10(7) , 1000-fold larger than an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples.


Assuntos
Biomarcadores , Metagenoma , Filogenia , Proteoma/genética , Variação Genética , Humanos , Oceanos e Mares , Prochlorococcus/genética , Especificidade da Espécie , Synechococcus/genética
14.
J Biol Chem ; 288(12): 8468-8478, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23376276

RESUMO

The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/enzimologia , Manganês/fisiologia , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Apoenzimas/isolamento & purificação , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Sequência Conservada , Ativação Enzimática , Ligação de Hidrogênio , Peróxido de Hidrogênio , Manganês/metabolismo , Mitocôndrias/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Transporte Proteico , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/química , Superóxido Dismutase/isolamento & purificação
15.
Plant Physiol ; 163(2): 815-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23950220

RESUMO

In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/fisiologia , Fotossíntese/fisiologia , Synechococcus/crescimento & desenvolvimento , Synechococcus/fisiologia , Temperatura , Organismos Aquáticos/efeitos da radiação , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Transporte de Elétrons/efeitos da radiação , Fluorescência , Geografia , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Ficobilissomas/efeitos da radiação , Proteômica , Propriedades de Superfície , Synechococcus/efeitos da radiação
16.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38513256

RESUMO

Recent studies have demonstrated regional differences in marine ecosystem C:N:P with implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient stress explain variability in C:N:P equally well. A reductionistic approach can link changes in individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory chemostats, chemical analyses, and data-independent acquisition mass spectrometry proteomics. Nutrient supply accounted for most C:N:Pcell variability and induced tradeoffs between nutrient acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal effects via the "translation-compensation hypothesis" were only seen under P-stress. A Nonparametric Bayesian Local Clustering algorithm suggested that changes in lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P regulation. Physiological responses match field-based trends in ecosystem stoichiometry and suggest a hierarchical environmental regulation of current and future ocean C:N:P.


Assuntos
Ecossistema , Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Proteoma/metabolismo , Teorema de Bayes , Temperatura , Nitrogênio/metabolismo
17.
Front Microbiol ; 15: 1323499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444803

RESUMO

In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteria Synechococcus will respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study, Synechococcus isolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations in Synechococcus strains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.

18.
Nat Commun ; 15(1): 7325, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183190

RESUMO

Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems. Microeukaryotes were examined using a paired metatranscriptomic and metaproteomic approach. Here we show a diverse surface assemblage consisting of stramenopiles, dinoflagellates and ciliates represented in both the transcript and protein fractions, with foraminifera, radiolaria, picozoa, and discoba proteins enriched at >200 m, and fungal proteins emerging in waters >3000 m. In the broad microeukaryote community, nitrogen stress biomarkers were found at coastal sites, with phosphorus stress biomarkers offshore. This multi-omics dataset broadens our understanding of how microeukaryotic taxa and their functional processes are structured along environmental gradients of temperature, light, and nutrients.


Assuntos
Dinoflagellida , Ecossistema , Água do Mar , Oceano Atlântico , Dinoflagellida/metabolismo , Dinoflagellida/genética , Cilióforos/genética , Cilióforos/metabolismo , Transcriptoma , Estramenópilas/genética , Estramenópilas/metabolismo , Ciclo do Carbono , Nitrogênio/metabolismo , Proteômica/métodos
19.
ISME Commun ; 3(1): 88, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626172

RESUMO

Many marine microbes require vitamin B12 (cobalamin) but are unable to synthesize it, necessitating reliance on other B12-producing microbes. Thus, phytoplankton and bacterioplankton community dynamics can partially depend on the production and release of a limiting resource by members of the same community. We tested the impact of temperature and B12 availability on the growth of two bacterial taxa commonly associated with phytoplankton: Ruegeria pomeroyi, which produces B12 and fulfills the B12 requirements of some phytoplankton, and Alteromonas macleodii, which does not produce B12 but also does not strictly require it for growth. For B12-producing R. pomeroyi, we further tested how temperature influences B12 production and release. Access to B12 significantly increased growth rates of both species at the highest temperatures tested (38 °C for R. pomeroyi, 40 °C for A. macleodii) and A. macleodii biomass was significantly reduced when grown at high temperatures without B12, indicating that B12 is protective at high temperatures. Moreover, R. pomeroyi produced more B12 at warmer temperatures but did not release detectable amounts of B12 at any temperature tested. Results imply that increasing temperatures and more frequent marine heatwaves with climate change will influence microbial B12 dynamics and could interrupt symbiotic resource sharing.

20.
Curr Biol ; 33(5): 973-980.e5, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36773606

RESUMO

Stealing prey plastids for metabolic gain is a common phenomenon among protists within aquatic ecosystems.1 Ciliates of the Mesodinium rubrum species complex are unique in that they also steal a transcriptionally active but non-dividing prey nucleus, the kleptokaryon, from certain cryptophytes.2 The kleptokaryon enables full control and replication of kleptoplastids but has a half-life of about 10 days.2 Once the kleptokaryon is lost, the ciliate experiences a slow loss of photosynthetic metabolism and eventually death.2,3,4 This transient ability to function phototrophically allows M. rubrum to form productive blooms in coastal waters.5,6,7,8 Here, we show, using multi-omics approaches, that an Antarctic strain of the ciliate not only depends on stolen Geminigera cryophila organelles for photosynthesis but also for anabolic synthesis of fatty acids, amino acids, and other essential macromolecules. Transcription of diverse pathways was higher in the kleptokaryon than that in G. cryophila, and many increased in higher light. Proteins of major biosynthetic pathways were found in greater numbers in the kleptokaryon relative to M. rubrum, implying anabolic dependency on foreign metabolism. We show that despite losing transcriptional control of the kleptokaryon, M. rubrum regulates kleptoplastid pigments with changing light, implying an important role for post-transcriptional control. These findings demonstrate that the integration of foreign organelles and their gene and protein expression, energy metabolism, and anabolism occur in the absence of a stable endosymbiotic association. Our results shed light on potential events early in the process of complex plastid acquisition and broaden our understanding of symbiogenesis.


Assuntos
Cilióforos , Ecossistema , Roubo , Fotossíntese/fisiologia , Plastídeos/fisiologia , Criptófitas/genética , Cilióforos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa