Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Neurobiol Learn Mem ; 185: 107539, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648950

RESUMO

The basolateral complex of the amygdala (BLA) is critically involved in modulation of memory by stress hormones. Noradrenergic activation of the BLA enhances memory consolidation and plays a necessary role in the enhancing or impairing effects of stress hormones on memory. The BLA is not only involved in the consolidation of aversive memories but can regulate appetitive memory formation as well. Extensive evidence suggests that the BLA is a modulatory structure that influences consolidation of arousing memories through modulation of plasticity and expression of plasticity-related genes, such as the activity regulated cytoskeletal-associated (Arc/Arg 3.1) protein, in efferent brain regions. ARC is an immediate early gene whose mRNA is localized to the dendrites and is necessary for hippocampus-dependent long-term potentiation and long-term memory formation. Post-training intra-BLA infusions of the ß-adrenoceptor agonist, clenbuterol, enhances memory for an aversive task and increases dorsal hippocampus ARC protein expression following training on that task. To examine whether this function of BLA noradrenergic signaling extends to the consolidation of appetitive memories, the present studies test the effect of post-training intra-BLA infusions of clenbuterol on memory for the appetitive conditioned place preference (CPP) task and for effects on ARC protein expression in hippocampal synapses. Additionally, the necessity of increased hippocampal ARC protein expression was also examined for long-term memory formation of the CPP task. Immediate post-training intra-BLA infusions of clenbuterol (4 ng/0.2 µL) significantly enhanced memory for the CPP task. This same memory enhancing treatment significantly increased ARC protein expression in dorsal, but not ventral, hippocampal synaptic fractions. Furthermore, immediate post-training intra-dorsal hippocampal infusions of Arc antisense oligodeoxynucleotides (ODNs), which reduce ARC protein expression, prevented long-term memory formation for the CPP task. These results suggest that noradrenergic activity in the BLA influences long-term memory for aversive and appetitive events in a similar manner and the role of the BLA is conserved across classes of memory. It also suggests that the influence of the BLA on hippocampal ARC protein expression and the role of hippocampal ARC protein expression are conserved across classes of emotionally arousing memories.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Clembuterol/farmacologia , Condicionamento Operante/fisiologia , Proteínas do Citoesqueleto/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Masculino , Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos
2.
Neurobiol Learn Mem ; 184: 107490, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302951

RESUMO

Memories of emotionally arousing events tend to endure longer than other memories. This review compiles findings from several decades of research investigating the role of the amygdala in modulating memories of emotional experiences. Episodic memory is a kind of declarative memory that depends upon the hippocampus, and studies suggest that the basolateral complex of the amygdala (BLA) modulates episodic memory consolidation through interactions with the hippocampus. Although many studies in rodents and imaging studies in humans indicate that the amygdala modulates memory consolidation and plasticity processes in the hippocampus, the anatomical pathways through which the amygdala affects hippocampal regions that are important for episodic memories were unresolved until recent optogenetic advances made it possible to visualize and manipulate specific BLA efferent pathways during memory consolidation. Findings indicate that the BLA influences hippocampal-dependent memories, as well as synaptic plasticity, histone modifications, gene expression, and translation of synaptic plasticity associated proteins in the hippocampus. More recent findings from optogenetic studies suggest that the BLA modulates spatial memory via projections to the medial entorhinal cortex, and that the frequency of activity in this pathway is a critical element of this modulation.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Córtex Entorrinal/fisiologia , Humanos , Vias Neurais/fisiologia
3.
Neurobiol Learn Mem ; 181: 107425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33771710

RESUMO

Traumatic experiences involve complex sensory information, and individuals with trauma-related psychological disorders, such as posttraumatic stress disorder (PTSD), can exhibit abnormal fear to numerous different stimuli that remind them of the trauma. Vagus nerve stimulation (VNS) enhances extinction of auditory fear conditioning in rat models for PTSD. We recently found that VNS-paired extinction can also promote extinction generalization across different auditory cues. Here we tested whether VNS can enhance extinction of olfactory fear and promote extinction generalization across auditory and olfactory sensory modalities. Male Sprague Dawley rats were implanted with a stimulating cuff on the cervical vagus nerve. Rats then received two days of fear conditioning where olfactory (amyl acetate odor) and auditory (9 kHz tones) stimuli were concomitantly paired with footshock. Twenty-four hours later, rats were given three days of sham or VNS-paired extinction (5 stimulations, 30-sec trains at 0.4 mA) overlapping with presentation of either the olfactory or the auditory stimulus. Two days later, rats were given an extinction retention test where avoidance of the olfactory stimulus or freezing to the auditory stimulus were measured. VNS-paired with exposure to the olfactory stimulus during extinction reduced avoidance of the odor in the retention test. VNS-paired with exposure to the auditory stimulus during extinction also decreased avoidance of the olfactory cue, and VNS paired with exposure to the olfactory stimulus during extinction reduced freezing when the auditory stimulus was presented in the retention test. These results indicate that VNS enhances extinction of olfactory fear and promotes extinction generalization across different sensory modalities. Extinction generalization induced by VNS may therefore improve outcomes of exposure-based therapies.


Assuntos
Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Generalização Psicológica/fisiologia , Estimulação do Nervo Vago/métodos , Estimulação Acústica , Animais , Aprendizagem da Esquiva/fisiologia , Medo , Terapia Implosiva , Masculino , Estimulação Física , Ratos , Ratos Sprague-Dawley , Olfato , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/terapia
4.
Pharmacol Rev ; 69(3): 236-255, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28420719

RESUMO

Memory consolidation involves the process by which newly acquired information becomes stored in a long-lasting fashion. Evidence acquired over the past several decades, especially from studies using post-training drug administration, indicates that emotional arousal during the consolidation period influences and enhances the strength of the memory and that multiple different chemical signaling systems participate in this process. The mechanisms underlying the emotional influences on memory involve the release of stress hormones and activation of the basolateral amygdala, which work together to modulate memory consolidation. Moreover, work suggests that this amygdala-based memory modulation occurs with numerous types of learning and involves interactions with many different brain regions to alter consolidation. Additionally, studies suggest that emotional arousal and amygdala activity in particular influence synaptic plasticity and associated proteins in downstream brain regions. This review considers the historical understanding for memory modulation and cellular consolidation processes and examines several research areas currently using this foundational knowledge to develop therapeutic treatments.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Emoções/efeitos dos fármacos , Emoções/fisiologia , Aprendizagem/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Animais , Nível de Alerta/efeitos dos fármacos , Nível de Alerta/fisiologia , Humanos , Aprendizagem/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia
5.
Learn Mem ; 26(7): 245-251, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209119

RESUMO

Vagus nerve stimulation (VNS) enhances extinction of conditioned fear in rats. Previous findings support the hypothesis that VNS effects on extinction are due to enhanced consolidation of extinction memories through promotion of plasticity in extinction-related brain pathways however, alternative explanations are plausible. According to one hypothesis, VNS may produce a hedonic effect and enhance extinction through counter-conditioning. According to another hypothesis, VNS reduces anxiety during exposure and this weakens the association of conditioned stimuli with aversive conditioned responses. The present set of experiments (1) used conditioned place preference (CPP) to identify potential rewarding effects associated with VNS and (2) examined the peripheral effects of VNS on anxiety and extinction enhancement. Male Sprague-Dawley rats were surgically implanted with cuff electrodes around the vagus nerve and subjected to a CPP task in which VNS and sham stimulation were each paired with one of two distinct contexts over the course of 5 d. Following this procedure, rats did not show a place preference, suggesting that VNS is not rewarding or aversive. The role of the peripheral parasympathetic system in the anxiolytic effect of VNS on the elevated plus maze was examined by blocking peripheral muscarinic receptors with intraperitoneal administration of methyl scopolamine prior to VNS. Methyl scopolamine blocked the VNS-induced reduction in anxiety but did not interfere with VNS enhancement of extinction of conditioned fear, indicating that the anxiety-reducing effect of VNS is not necessary for the extinction enhancement.


Assuntos
Ansiedade/fisiopatologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Sistema Nervoso Parassimpático/fisiopatologia , Estimulação do Nervo Vago , Animais , Ansiedade/tratamento farmacológico , Condicionamento Clássico/fisiologia , Vias Eferentes/fisiologia , Eletrodos Implantados , Eletrochoque , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Modelos Neurológicos , Modelos Psicológicos , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , N-Metilescopolamina/farmacologia , N-Metilescopolamina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/fisiologia
6.
J Neurosci ; 38(11): 2698-2712, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29431646

RESUMO

Although evidence suggests that the basolateral amygdala (BLA) and dorsal hippocampus (DH) work together to influence the consolidation of spatial/contextual learning, the circuit mechanism by which the BLA selectively modulates spatial/contextual memory consolidation is not clear. The medial entorhinal cortex (mEC) is a critical region in the hippocampus-based system for processing spatial information. As an efferent target of the BLA, the mEC is a candidate by which the BLA influences the consolidation of such learning. To address several questions regarding this issue, male Sprague Dawley rats received optogenetic manipulations of different BLA afferents immediately after training in different learning tasks. Optogenetic stimulation of the BLA-mEC pathway using ChR2(E123A) after spatial and cued-response Barnes maze training enhanced and impaired retention, respectively, whereas optical inhibition of the pathway using eNpHR3.0 produced trends in the opposite direction. Similar stimulation of the BLA-posterior dorsal striatum pathway had no effect. BLA-mEC stimulation also selectively enhanced retention for the contextual, but not foot shock, component of a modified contextual fear-conditioning procedure. In both sets of experiments, only stimulation using bursts of 8 Hz light pulses significantly enhanced retention, suggesting the importance of driving activity in this frequency range. An 8 Hz stimulation of the BLA-mEC pathway increased local field potential power in the same frequency range in the mEC and in the DH. Together, the present findings suggest that the BLA modulates the consolidation of spatial/contextual memory via projections to the mEC and that activity within the 8 Hz range is critical for this modulation.SIGNIFICANCE STATEMENT The mechanism by which the basolateral amygdala (BLA) influences the consolidation of spatial/contextual memory is unknown. Using an optogenetic approach with multiple behavioral procedures, we found that immediate posttraining 8 Hz stimulation of BLA projections to the medial entorhinal cortex (mEC) enhanced retention for spatial/contextual memory, impaired retention for cued-response memory, and had no effect on foot shock learning for contextual fear conditioning. Electrophysiological recordings confirmed that 8 Hz stimulation of this pathway increased activity in the 8 Hz range in the mEC and in the dorsal hippocampus, a region critical for spatial memory consolidation. This suggests that coordinated BLA activity with downstream regions in the 8 Hz activity range immediately after training is important for consolidation of multiple memory forms.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Aprendizagem/fisiologia , Aprendizagem Espacial/fisiologia , Vias Aferentes/fisiologia , Animais , Condicionamento Psicológico , Sinais (Psicologia) , Eletrochoque , Masculino , Aprendizagem em Labirinto , Memória/fisiologia , Consolidação da Memória , Optogenética , Ratos , Ratos Sprague-Dawley , Ritmo Teta
7.
Stress ; 22(4): 509-520, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010369

RESUMO

We have shown that vagus nerve stimulation (VNS) enhances extinction of conditioned fear and reduces anxiety in rat models of PTSD using moderate stress. However, it is still unclear if VNS can be effective in enhancing extinction of severe fear after prolonged and repeated trauma. Severe fear was induced in adult male rats by combining single prolonged stress (SPS) and protracted aversive conditioning (PAC). After SPS and PAC procedures, rats were implanted with stimulating cuff electrodes, exposed to five days of extinction training with or without VNS, and then tested for extinction retention, return of fear in a new context and reinstatement. The elevated plus maze, open field and startle were used to test anxiety. Sham rats showed no reduction of fear during extensive extinction training. VNS-paired with extinction training reduced freezing at the last extinction session by 70% compared to sham rats. VNS rats exhibited half as much fear as shams, as well as less fear renewal. Sham rats exhibited significantly more anxiety than naive controls, whereas VNS rats did not. These results demonstrate that VNS enhances extinction and reduces anxiety in a severe model of PTSD that combined SPS and a conditioning procedure that is 30 times more intense than the conditioning procedures in previous VNS studies. The broad utility of VNS in enhancing extinction learning in rats and the strong clinical safety record of VNS suggest that VNS holds promise as an adjuvant to exposure-based therapy in people with PTSD and other complex forms of this condition.


Assuntos
Extinção Psicológica/fisiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Estresse Psicológico/psicologia , Estimulação do Nervo Vago/psicologia , Nervo Vago/fisiologia , Animais , Ansiedade/fisiopatologia , Condicionamento Psicológico , Medo/fisiologia , Aprendizagem/fisiologia , Masculino , Ratos
8.
Neural Plast ; 2016: 4273280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27957346

RESUMO

Vagus nerve stimulation (VNS) enhances the consolidation of extinction of conditioned fear. High frequency stimulation of the infralimbic cortex (IL) produces long-term potentiation in the basolateral amygdala (BLA) in rats given VNS-paired extinction training, whereas the same stimulation produces long-term depression in sham-treated rats. The present study investigated the state of synaptic plasticity-associated proteins in the BLA that could be responsible for this shift. Male Sprague-Dawley rats were separated into 4 groups: auditory fear conditioning only (fear-conditioned); fear conditioning + 20 extinction trials (extended-extinction); fear conditioning + 4 extinction trials paired with sham stimulation (sham-extinction); fear conditioning + 4 extinction trials paired with VNS (VNS-extinction). Freezing was significantly reduced in extended-extinction and VNS-extinction rats. Western blots were used to quantify expression and phosphorylation state of synaptic plasticity-associated proteins such as Arc, CaMKII, ERK, PKA, and AMPA and NMDA receptors. Results show significant increases in GluN2B expression and phosphorylated CaMKII in BLA samples from VNS- and extended-extinction rats. Arc expression was significantly reduced in VNS-extinction rats compared to all groups. Administration of the GluN2B antagonist ifenprodil immediately after fear extinction training blocked consolidation of extinction learning. Results indicate a role for BLA CaMKII-induced GluN2B expression and reduced Arc protein in VNS-enhanced extinction.


Assuntos
Tonsila do Cerebelo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Proteínas do Citoesqueleto/biossíntese , Medo/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Estimulação do Nervo Vago/métodos , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Medo/psicologia , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estimulação do Nervo Vago/psicologia
9.
Neurobiol Learn Mem ; 115: 49-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25196704

RESUMO

The basolateral complex of the amygdala (BLA) plays a role in the modulation of emotional memory consolidation through its interactions with other brain regions. In rats, memory enhancing infusions of the ß-adrenergic receptor agonist clenbuterol into the BLA immediately after training enhances expression of the protein product of the immediate early gene Arc in the dorsal hippocampus and memory-impairing intra-BLA treatments reduce hippocampal Arc expression. We have proposed that the BLA may modulate memory consolidation through an influence on the local translation of synaptic plasticity proteins, like Arc, in recently active synapses in efferent brain regions. To date, all work related to this hypothesis is based on aversive memory tasks such as inhibitory avoidance (IA). To determine whether BLA modulation of hippocampal Arc protein expression is specific to plasticity associated with inhibitory avoidance memory, or a common mechanism for multiple types of memory, we tested the effect of intra-BLA infusions of clenbuterol on memory and hippocampal synaptic Arc expression following IA or object recognition training. Results indicate that intra-BLA infusions of clenbuterol enhance memory for both tasks; however, Arc expression in hippocampal synaptoneurosomes was significantly elevated only in rats trained on the aversive IA task. These findings suggest that regulation of Arc expression in hippocampal synapses may depend on co-activation of arousal systems. To test this hypothesis, a "high arousal" version of the OR task was used where rats were not habituated to the testing conditions. Posttraining intra-BLA infusions of clenbuterol enhanced consolidation of the high-arousing version of the task and significantly increased Arc protein levels in dorsal hippocampus synaptic fractions. These findings suggest that the BLA modulates multiple forms of memory and affects the synaptic plasticity-associated protein Arc in synapses of the dorsal hippocampus when emotional arousal is elevated.


Assuntos
Neurônios Adrenérgicos/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Proteínas do Citoesqueleto/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios Adrenérgicos/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Clembuterol/farmacologia , Proteínas do Citoesqueleto/biossíntese , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Masculino , Proteínas do Tecido Nervoso/biossíntese , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Sinapses/fisiologia
10.
Neurobiol Learn Mem ; 112: 148-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24603007

RESUMO

Acute administration of the stress hormone corticosterone enhances memory consolidation in a manner that is dependent upon the modulatory effects of the basolateral complex of the amygdala (BLA). Posttraining administration of corticosterone increases expression of the activity-regulated cytoskeletal-associated protein (Arc) in hippocampal synaptic-enriched fractions. Interference with hippocampal Arc expression impairs memory, suggesting that the corticosterone-induced increase in hippocampal Arc plays a role in the memory enhancing effect of the hormone. Blockade of ß-adrenoceptors in the BLA attenuates the corticosterone-induced increase in hippocampal Arc expression and blocks corticosterone-induced memory enhancement. To determine whether posttraining corticosterone treatment affects Arc protein expression in synapses of other areas of the brain that are involved in memory processing, a memory-enhancing dose of corticosterone was administered to rats immediately after inhibitory avoidance training. As seen in the hippocampus, Arc protein expression was increased in synaptic fractions taken from the prelimbic region of the medial prefrontal cortex (mPFC). Blockade of Arc protein expression significantly impaired memory, indicating that the protein is necessary in the mPFC for long-term memory formation. To test the hypothesis that blockade of ß-adrenoceptors in the BLA would block the effect of systemic corticosterone on memory and attenuate mPFC Arc expression, as it does in the hippocampus, posttraining intra-BLA microinfusions of the ß-adrenoceptor antagonist propranolol were given concurrently with the systemic corticosterone injection. Although this treatment blocked corticosterone-induced memory enhancement, it increased corticosterone-induced Arc protein expression in mPFC synaptic fractions. These findings suggest that the BLA mediates stress hormone effects on memory by participating in the negative or positive regulation of corticosterone-induced synaptic plasticity in efferent brain regions.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Corticosterona/farmacologia , Proteínas do Citoesqueleto/biossíntese , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Córtex Pré-Frontal/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Proteínas do Citoesqueleto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Memória de Longo Prazo/efeitos dos fármacos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Propranolol/administração & dosagem , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
11.
Rev Neurosci ; 23(5-6): 449-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23096101

RESUMO

Acute stress and emotional arousal can enhance the consolidation of long-term memories in a manner that is dependent on ß -adrenoceptor activation in the basolateral complex of the amygdala (BLA). The BLA interacts with multiple memory systems in the brain to modulate a variety of classes of memory. However, the synaptic mechanisms of this interaction remain unresolved. This review describes the evidence of modulation of memory and synaptic plasticity produced by emotional arousal,stress hormones, and pharmacological or electrophysiological stimulation of the amygdala. The amygdala modulation of local translation and/or degradation of the synaptic plasticity-related proteins, activity-regulated cytoskeletal-associated protein and calcium/calmodulin dependent protein kinase II α , is offered as a potential mechanism for the rapid memory consolidation that is associated with emotionally arousing events. This model shares features with synaptic tagging and the emotional tagging hypotheses.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Sinapses/fisiologia , Tonsila do Cerebelo/citologia , Animais , Humanos , Memória/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-36303861

RESUMO

Anxiety disorders affect a large percentage of individuals who have an autism spectrum disorder (ASD). In children with ASD, excessive anxiety is also linked to gastrointestinal problems, self-injurious behaviors, and depressive symptoms. Exposure-based cognitive behavioral therapies are effective treatments for anxiety disorders in children with ASD, but high relapse rates indicate the need for additional treatment strategies. This perspective discusses evidence from preclinical research, which indicates that vagus nerve stimulation (VNS) paired with exposure to fear-provoking stimuli and situations could offer benefits as an adjuvant treatment for anxiety disorders that coexist with ASD. Vagus nerve stimulation is approved for use in the treatment of epilepsy, depression, and more recently as an adjuvant in rehabilitative training following stroke. In preclinical models, VNS shows promise in simultaneously enhancing consolidation of extinction memories and reducing anxiety. In this review, we will present potential mechanisms by which VNS could treat fear and anxiety in ASD. We also discuss potential uses of VNS to treat depression and epilepsy in the context of ASD, and noninvasive methods to stimulate the vagus nerve.

13.
Sci Rep ; 12(1): 16526, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192564

RESUMO

Studies have indicated that vagus nerve stimulation (VNS) enhances extinction learning in rodent models. Here, we investigated if pairing VNS with the conditioned stimulus is required for the enhancing effects of VNS. Adult Sprague-Dawley rats were exposed to intense stress followed by fear conditioning training to produce resistant fear. Rats were then implanted with a cuff electrode around the left vagus. After recovery, rats underwent extinction training paired with VNS (0.5 s, 0.8 mA, 100 µs, and 30 Hz) or with Sham VNS (0 mA). VNS rats were randomized into the following subgroups: During VNS (delivered during presentations of the conditioned stimulus, CS), Between VNS (delivered between CS presentations), Continuous VNS (delivered during the entire extinction session), and Dispersed VNS (delivered at longer inter-stimulation intervals across the extinction session). Sham VNS rats failed to extinguish the conditioned fear response over 5 days of repeated exposure to the CS. Rats that received Between or Dispersed VNS showed modest improvement in conditioned fear at the retention test. During and Continuous VNS groups displayed the greatest reduction in conditioned fear. These findings indicate that delivering VNS paired precisely with CS presentations or continuously throughout extinction promotes the maximum enhancement in extinction learning.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Estimulação do Nervo Vago , Animais , Ratos , Extinção Psicológica/fisiologia , Medo/fisiologia , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/terapia , Nervo Vago
14.
Neurobiol Learn Mem ; 95(4): 425-32, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21315825

RESUMO

The activity-regulated-cytoskeletal-associated protein (Arc) has a well established role in memory consolidation and synaptic plasticity in the hippocampus and amygdala. However the role of Arc within the anterior cingulate cortex (ACC), an area of the brain involved in processing memory for pain, has yet to be examined. Here we sought to determine if Arc protein within neurons of the rat ACC is necessary for the consolidation of a single-trial, contextual inhibitory avoidance (IA) task. Immunohistochemistry and western blotting revealed an increase in Arc protein within the ACC following IA training in a shock-specific manner, suggesting that ACC Arc expression may play a critical role in the consolidation of the aversive task. To directly test this hypothesis, male Sprague-Dawley rats were trained on the IA task and given post-training intra-ACC infusions of Arc antisense oligodeoxynucleotides (ODNs), designed to suppress Arc translation, or control scrambled ODNs that do not suppress Arc translation. Memory retention was tested 48h after training. Arc antisense-induced disruption of Arc protein expression in the ACC impaired long-term memory for the IA task as compared to rats given intra-ACC infusions of the scrambled control ODNS, suggesting that Arc expression in the ACC is important for the consolidation of emotional memory. Results further indicate that knock down of Arc 6h after training impairs IA memory. This is consistent with time course findings indicating elevated Arc expression at 3 and 6h after IA training but not 12 or 48h. Taken together, these findings support the hypothesis that Arc expression in the ACC participates in synaptic plasticity that underlies long-term memory.


Assuntos
Aprendizagem da Esquiva/fisiologia , Proteínas do Citoesqueleto/metabolismo , Giro do Cíngulo/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Giro do Cíngulo/efeitos dos fármacos , Imuno-Histoquímica , Inibição Psicológica , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Oligorribonucleotídeos Antissenso/administração & dosagem , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas
15.
Neuropsychopharmacology ; 46(6): 1172-1182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33007779

RESUMO

The basolateral amygdala (BLA) modulates the consolidation of dorsal hippocampus (DH)-dependent spatial and dorsolateral striatum (DLS)-dependent cued-response memories, often in competition with one another. Evidence suggests that a critical mechanism for BLA influences on memory consolidation is via effects on activity-regulated cytoskeletal-associated protein (ARC) in downstream brain regions. However, the circuitry by which the BLA modulates ARC in multiple competing memory systems remains unclear. Prior evidence indicates that optogenetic stimulation of BLA projections to the medial entorhinal cortex (mEC) enhances the consolidation of spatial learning and impairs the consolidation of cued-response learning, suggesting this pathway provides a circuit for favoring one system over another. Therefore, we hypothesized the BLA-mEC pathway mediates effects on downstream ARC-based synaptic plasticity related to these competing memory systems. To address this, male and female Sprague-Dawley rats underwent spatial or cued-response Barnes maze training and, 45 min later, were sacrificed for ARC analysis in synaptoneurosomes from the DH and DLS. Initial experiments found that spatial training alone increased ARC levels in the DH above those observed in control rats and rats that underwent a cued-response version of the task. Postspatial training optogenetic stimulation of the BLA-mEC pathway altered the balance of ARC expression in the DH vs. DLS, specifically shifting the balance in favor of the DH-based spatial memory system, although the precise region of ARC changes differed by sex. These findings suggest that BLA-mEC pathway influences on ARC in downstream regions are a mechanism by which the BLA can favor one memory system over another.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo , Animais , Córtex Entorrinal , Feminino , Hipocampo , Masculino , Ratos , Ratos Sprague-Dawley , Memória Espacial
16.
Exp Neurol ; 341: 113718, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844986

RESUMO

Studies in rodents indicate that pairing vagus nerve stimulation (VNS) with extinction training enhances fear extinction. However, the role of stimulation parameters on the effects of VNS remains largely unknown. Identifying the optimal stimulation intensity is a critical step in clinical translation of neuromodulation-based therapies. Here, we sought to investigate the role of stimulation intensity in rats receiving VNS paired with extinction training in a rat model for Posttraumatic Stress Disorder (PTSD). Male Sprague-Dawley rats underwent single prolonged stress followed by a severe fear conditioning training and were implanted with a VNS device. After recovery, independent groups of rats were exposed to extinction training paired with sham (0 mA) or VNS at different intensities (0.4, 0.8, or 1.6 mA). VNS intensities of 0.4 mA or 0.8 mA decreased conditioned fear during extinction training compared to sham stimulation. Pairing extinction training with moderate VNS intensity of 0.8 mA produced significant reduction in conditioned fear during extinction retention when rats were tested a week after VNS-paired extinction. High intensity VNS at 1.6 mA failed to enhance extinction. These findings indicate that a narrow range of VNS intensities enhances extinction learning, and suggest that the 0.8 mA VNS intensity used in earlier rodent and human stroke studies may also be the optimal in using VNS as an adjuvant in exposure therapies for PTSD.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Medo/psicologia , Estimulação do Nervo Vago/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
17.
Front Behav Neurosci ; 15: 780326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987362

RESUMO

Post-traumatic stress disorder (PTSD) is associated with decreased activity in the prefrontal cortex. PTSD-like pathophysiology and behaviors have been observed in rodents exposed to a single prolonged stress (SPS) procedure. When animals are left alone for 7 days after SPS treatment, they show increased anxiety-like behavior and impaired extinction of conditioned fear, and reduced activity in the prefrontal cortex. Here, we tested the hypothesis that daily optogenetic stimulation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) during the 7 days after SPS would reverse SPS effects on anxiety and fear extinction. Male Sprague-Dawley rats underwent SPS and then received daily optogenetic stimulation (20 Hz, 2 s trains, every 10 s for 15 min/day) of glutamatergic neurons of the left or right IL for seven days. After this incubation period, rats were tested in the elevated plus-maze (EPM). Twenty-four hours after the EPM test, rats underwent auditory fear conditioning (AFC), extinction training and a retention test. SPS increased anxiety-like behavior in the EPM task and produced a profound impairment in extinction of AFC. Optogenetic stimulation of the left IL, but not right, during the 7-day incubation period reversed the extinction impairment. Optogenetic stimulation did not reverse the increased anxiety-like behavior, suggesting that the extinction effects are not due to a treatment-induced reduction in anxiety. Results indicate that increased activity of the left IL after traumatic experiences can prevent development of extinction impairments. These findings suggest that non-invasive brain stimulation may be a useful tool for preventing maladaptive responses to trauma.

18.
J Neurosci ; 29(45): 14299-308, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19906977

RESUMO

Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing training depend on functional interactions between the BLA and the medial prefrontal cortex (mPFC), a brain region involved in higher-order cognitive and affective processing. The glucocorticoid receptor (GR) agonist 11beta,17beta-dihydroxy-6,21-dimethyl-17alpha-pregna-4,6-trien-20yn-3-one (RU 28362) administered unilaterally into the left mPFC of male Sprague Dawley rats immediately after inhibitory avoidance training enhanced 48 h retention performance. An ipsilateral, but not contralateral, lesion of the BLA blocked the memory enhancement. In a second experiment, RU 28362 infused into the mPFC after inhibitory avoidance training increased BLA levels of phosphorylated extracellular signal-regulated kinase 1/2 (pErk1/2). Blockade of this pErk1/2 activity in the BLA with the mitogen-activated protein kinase kinase inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] prevented the memory enhancement, suggesting that GR agonist administration into the mPFC enhances memory consolidation via modulation of BLA activity. Conversely, GR agonist infusions administered into the BLA posttraining increased pErk1/2 levels in the mPFC in regulating memory consolidation. Moreover, as assessed with a two-phase inhibitory avoidance procedure designed to separate modulatory influences on memory of context and footshock, posttraining GR agonist infusions into either the BLA or mPFC enhanced memory of the contextual as well as aversive information acquired during inhibitory avoidance training. These findings indicate that glucocorticoid effects on memory consolidation depend on bidirectional interactions between the BLA and mPFC.


Assuntos
Tonsila do Cerebelo/fisiologia , Glucocorticoides/metabolismo , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Androstanóis/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Fármacos do Sistema Nervoso Central/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Lateralidade Funcional , Masculino , Memória/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/agonistas , Transdução de Sinais
19.
Neurobiol Learn Mem ; 93(3): 312-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19932757

RESUMO

Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a beta-adrenoceptor agonist immediately after inhibitory avoidance training enhanced memory consolidation and increased hippocampal expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc). In the present experiments corticosterone (3 mg/kg, i.p.) was administered to male Sprague-Dawley rats immediately after inhibitory avoidance training to examine effects on long-term memory, amygdala norepinephrine levels, and hippocampal Arc expression. Corticosterone increased amygdala norepinephrine levels 15 min after inhibitory avoidance training, as assessed by in vivo microdialysis, and enhanced memory tested at 48 h. Corticosterone treatment also increased expression of Arc protein in hippocampal synaptic tissue. The elevation in BLA norepinephrine appears to participate in corticosterone-influenced modulation of hippocampal Arc expression as intra-BLA blockade of beta-adrenoceptors with propranolol (0.5 microg/0.2 microL) attenuated the corticosterone-induced synaptic Arc expression in the hippocampus. These findings indicate that noradrenergic activity at BLA beta-adrenoceptors is involved in corticosterone-induced enhancement of memory consolidation and expression of the synaptic-plasticity-related protein Arc in the hippocampus.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Corticosterona/farmacologia , Proteínas do Citoesqueleto/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Glucocorticoides/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Norepinefrina/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Immunoblotting , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley
20.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148657

RESUMO

An ongoing debate surrounding transcranial direct current stimulation (tDCS) of the scalp is whether it modulates brain activity both directly and in a regionally constrained manner enough to positively affect symptoms in patients with neurological disorders. One alternative explanation is that direct current stimulation affects neural circuits mainly indirectly, i.e., via peripheral nerves. Here, we report that noninvasive direct current stimulation indirectly affects neural circuits via peripheral nerves. In a series of studies, we show that direct current stimulation can cause activation of the greater occipital nerve (ON-tDCS) and augments memory via the ascending fibers of the occipital nerve to the locus coeruleus, promoting noradrenaline release. This noradrenergic pathway plays a key role in driving hippocampal activity by modifying functional connectivity supporting the consolidation of a memory event.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa