Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(26): 9892-9900, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37336762

RESUMO

We present a chip-based extended nano-Coulter counter (XnCC) that can detect nanoparticles affinity-selected from biological samples with low concentration limit-of-detection that surpasses existing resistive pulse sensors by 2-3 orders of magnitude. The XnCC was engineered to contain 5 in-plane pores each with an effective diameter of 350 nm placed in parallel and can provide high detection efficiency for single particles translocating both hydrodynamically and electrokinetically through these pores. The XnCC was fabricated in cyclic olefin polymer (COP) via nanoinjection molding to allow for high-scale production. The concentration limit-of-detection of the XnCC was 5.5 × 103 particles/mL, which was a 1,100-fold improvement compared to a single in-plane pore device. The application examples of the XnCC included counting affinity selected SARS-CoV-2 viral particles from saliva samples using an aptamer and pillared microchip; the selection/XnCC assay could distinguish the COVID-19(+) saliva samples from those that were COVID-19(-). In the second example, ovarian cancer extracellular vesicles (EVs) were affinity selected using a pillared chip modified with a MUC16 monoclonal antibody. The affinity selection chip coupled with the XnCC was successful in discriminating between patients with high grade serous ovarian cancer and healthy donors using blood plasma as the input sample.


Assuntos
COVID-19 , Vesículas Extracelulares , Nanopartículas , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Vírion
2.
Small ; 17(42): e2102567, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558175

RESUMO

Nanoscale electrophoresis allows for unique separations of single molecules, such as DNA/RNA nucleobases, and thus has the potential to be used as single molecular sensors for exonuclease sequencing. For this to be envisioned, label-free detection of the nucleotides to determine their electrophoretic mobility (i.e., time-of-flight, TOF) for highly accurate identification must be realized. Here, for the first time a novel nanosensor is shown that allows discriminating four 2-deoxyribonucleoside 5'-monophosphates, dNMPs, molecules in a label-free manner by nanoscale electrophoresis. This is made possible by positioning two sub-10 nm in-plane pores at both ends of a nanochannel column used for nanoscale electrophoresis and measuring the longitudinal transient current during translocation of the molecules. The dual nanopore TOF sensor with 0.5, 1, and 5 µm long nanochannel column lengths discriminates different dNMPs with a mean accuracy of 55, 66, and 94%, respectively. This nanosensor format can broadly be applicable to label-free detection and discrimination of other single molecules, vesicles, and particles by changing the dimensions of the nanochannel column and in-plane nanopores and integrating different pre- and postprocessing units to the nanosensor. This is simple to accomplish because the nanosensor is contained within a fluidic network made in plastic via replication.


Assuntos
Nanoporos , Nucleotídeos , DNA , Eletroforese , Nanotecnologia
3.
Lab Chip ; 24(10): 2721-2735, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38656267

RESUMO

We report the generation of ∼8 nm dual in-plane pores fabricated in a thermoplastic via nanoimprint lithography (NIL). These pores were connected in series with nanochannels, one of which served as a flight tube to allow the identification of single molecules based on their molecular-dependent apparent mobilities (i.e., dual in-plane nanopore sensor). Two different thermoplastics were investigated including poly(methyl methacrylate), PMMA, and cyclic olefin polymer, COP, as the substrate for the sensor both of which were sealed using a low glass transition cover plate (cyclic olefin co-polymer, COC) that could be thermally fusion bonded to the PMMA or COP substrate at a temperature minimizing nanostructure deformation. Unique to these dual in-plane nanopore sensors was two pores flanking each side of the nanometer flight tube (50 × 50 nm, width × depth) that was 10 µm in length. The utility of this dual in-plane nanopore sensor was evaluated to not only detect, but also identify single ribonucleotide monophosphates (rNMPs) by using the travel time (time-of-flight, ToF), the resistive pulse event amplitude, and the dwell time. In spite of the relatively large size of these in-plane pores (∼8 nm effective diameter), we could detect via resistive pulse sensing (RPS) single rNMP molecules at a mass load of 3.9 fg, which was ascribed to the unique structural features of the nanofluidic network and the use of a thermoplastic with low relative dielectric constants, which resulted in a low RMS noise level in the open pore current. Our data indicated that the identification accuracy of individual rNMPs was high, which was ascribed to an improved chromatographic contribution to the nano-electrophoresis apparent mobility. With the ToF data only, the identification accuracy was 98.3%. However, when incorporating the resistive pulse sensing event amplitude and dwell time in conjunction with the ToF and analyzed via principal component analysis (PCA), the identification accuracy reached 100%. These findings pave the way for the realization of a novel chip-based single-molecule RNA sequencing technology.


Assuntos
Nanoporos , Ribonucleotídeos/química , Ribonucleotídeos/análise , Temperatura , Polimetil Metacrilato/química
4.
Nat Commun ; 15(1): 4777, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839748

RESUMO

Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.


Assuntos
Robótica , Robótica/instrumentação , Robótica/métodos , Animais , Biomimética/métodos , Biomimética/instrumentação , Humanos , Próteses e Implantes , Pele , Desenho de Equipamento , Músculo Esquelético/fisiologia , Dispositivos Eletrônicos Vestíveis
5.
Anal Chem ; 85(21): 10344-53, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24083898

RESUMO

Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology, and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite that includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with transistor-transistor logic-based systems that are used for monitoring animal behavior, and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both subsecond and multiminute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments.


Assuntos
Técnicas Eletroquímicas/métodos , Software , Animais , Humanos
6.
Res Sq ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38196588

RESUMO

Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.

7.
Electroanalysis ; 34(12): 1961-1975, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37539083

RESUMO

We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses.

8.
Micromachines (Basel) ; 12(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530395

RESUMO

Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.

9.
Science ; 368(6487): 177-180, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32273466

RESUMO

Ratcheting effects play an important role in systems ranging from mechanical socket wrenches to biological motor proteins. The underlying principle is to convert a fluctuating, unbiased force into unidirectional motion. Here, we report the ratcheting of electrons at room temperature using a semiconductor nanowire with precisely engineered asymmetry. Modulation of the nanowire diameter creates a cylindrical sawtooth geometry with broken inversion symmetry on a nanometer-length scale. In a two-terminal device, this structure responded as a three-dimensional geometric diode that funnels electrons preferentially in one direction through specular reflection of quasi-ballistic electrons at the nanowire surface. The ratcheting effect causes charge rectification at frequencies exceeding 40 gigahertz, demonstrating the potential for applications such as high-speed data processing and long-wavelength energy harvesting.

10.
J Neurosci Methods ; 255: 29-37, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26226654

RESUMO

BACKGROUND: Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. NEW METHOD: We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200 µm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. RESULTS: We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. CONCLUSIONS: Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision.


Assuntos
Eletroquímica/instrumentação , Eletrodos , Eletrofisiologia/instrumentação , Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Animais , Nível de Alerta/fisiologia , Calibragem , Colina/metabolismo , Impedância Elétrica , Eletroquímica/métodos , Eletrofisiologia/métodos , Desenho de Equipamento , Masculino , Neurônios/fisiologia , Percepção Visual/fisiologia
11.
Rev Sci Instrum ; 82(7): 074302, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806203

RESUMO

Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.


Assuntos
Comportamento Animal/fisiologia , Eletroquímica/instrumentação , Fenômenos Eletrofisiológicos , Movimento/fisiologia , Animais , Eletrodos , Desenho de Equipamento , Miniaturização , Ratos , Restrição Física , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa