RESUMO
The high-affinity NGF receptor is thought to be a complex of two receptors , gp75 and the tyrosine kinase TrkA, but direct biochemical evidence for such an association had been lacking. In this report, we demonstrate the existence of such a gp75-TrkA complex by a copatching technique. Gp75 on the surface of intact cells is patched with an anti-gp75 antibody and fluorescent secondary antibody, the cells are then fixed to prevent further antibody-induced redistributions, and the distribution of TrkA is probed with and anti-TrkA antibody and fluorescent secondary antibody. We utilize a baculovirus-insect cell expression of wild-type and mutated NGF receptors. TrkA and gp75 copatch in both the absence and presence of NGF. The association is specific, since gp75 does not copatch with other tyrosine kinase receptors, including TrkB, platelet-derived growth factor receptor-beta, and Torso (Tor). To determine which domains of TrkA are required for copatching, we used a series of TrkA-Tor chimeric receptors and show that the extracellular domain of TrkA is sufficient for copatching with gp75. A chimeric receptor with TrkA transmembrane and intracellular domains show partial copatching with gp75. Deletion of the intracellular domain of gp75 decreases but does not eliminate copatching. A point mutation which inactivates the TrkA kinase has no effect on copatching, indicating that this enzymatic activity is not required for association with gp75. Hence, although interactions between the gp75 and TrkA extracellular domains are sufficient for complex formation, interactions involving other receptor domains also play a role.
Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Compartimento Celular , Células Cultivadas , Imunofluorescência , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/ultraestrutura , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/ultraestrutura , Receptor de Fator de Crescimento Neural , Receptor trkA , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/ultraestrutura , Proteínas Recombinantes/metabolismo , Spodoptera/citologiaRESUMO
We compared the properties in human melanoma cell line A875 and rat pheochromocytoma cell line PC12 of nerve growth factor receptor (NGFr). We also analyzed NGFr and a truncated NGFR lacking the cytoplasmic domain, which were transiently expressed in COS cells. The full-length NGFR expressed in COS cells bound nerve growth factor (NGF) with positive cooperativity, but A875 NGFr and truncated NGFr in COS cells did not display positive cooperativity. The anti-human NGFr monoclonal antibody NGFR5 was characterized and found not to compete with NGF for binding to NGFr. Fabs were prepared from NGFR5 and 192, an anti-rat NGFR monoclonal antibody that was previously shown not to compete with NGF for binding. Fluorescein-labeled Fabs were used to measure the distribution and lateral diffusion of the NGFr. NGFr expressed on COS and A875 cells are diffusely distributed, but NGFr on the surface of PC12 cells appeared, for some cells, to be patched. In A875 cells, 51% of the NGFr was free to diffuse with diffusion coefficient (D) approximately 7 X 10(-10) cm2/s. In COS cells, 43% diffused with D approximately 5 X 10(-10) cm2/s. There was no significant difference in diffusibility between the full-length NGFr and the truncated NGFr. We compared NGFr diffusion on PC12 cells in suspension or adherent to collagen-coated coverslips. For suspension cells, we obtained 32% recovery with D approximately 2.5 X 10(-9) cm2/s. On adherent cells, we obtained 17% recovery with 6 X 10(-9) cm2/s. Binding of NGF enhanced lateral diffusion of NGFr in A875 cells and in PC12 cells in suspension but did not alter lateral diffusion of NGFr in COS cells or in adherent PC12 cells. NGF had no effect on the diffusing fraction or the distribution of NGFR for any cell line.
Assuntos
Fatores de Crescimento Neural/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Anticorpos Monoclonais , Ligação Competitiva , Linhagem Celular , Membrana Celular/metabolismo , Difusão , Expressão Gênica , Humanos , Ligantes , Metabolismo dos Lipídeos , Ratos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de Fator de Crescimento Neural , Células Tumorais CultivadasRESUMO
Glycosyltransferases enzymatically transfer monosaccharides from sugar-nucleotides to complex oligosaccharide chains and, as cell surface molecules, exhibit receptor-like activity. We have modified the substate UDP-galactose to produce a compound that has useful absorbance and fluorescence properties upon binding to galactosyltransferase (GalTase). Using strategies similar to those for preparing fluorescent ATP analogs, we were able to synthesize 2,4,6-trinitrophenyl-5'-UDP-galactose (TUG). In solution, the absorbance properties of TUG are pH dependent, with absorbance maxima at 260, 408, and 453 nm and an isobestic point at 353 nm. In the presence of soluble GalTase extracted from bovine milk, TUG exhibited an excitation maximum at 368 nm with emission maxima at 436 and 533 nm; in the absence of GalTase only the 533-nm peak was present. Under enzymatic conditions, TUG acted as a competitive substrate of UDP-galactose with GalTase. Under noncatalytic conditions, the fluorescence emission of TUG at 436 nm increased monotonically with Gal-Tase concentration, with a half-maximal response at approximately 4 microM. This compound may be useful for quantifying GalTase function as both an enzyme and a cell adhesion molecule.
Assuntos
Galactosiltransferases/metabolismo , Trinitrobenzenos/isolamento & purificação , Uridina Difosfato Galactose , Uridina Difosfato Galactose/análogos & derivados , Ligação Competitiva , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Especificidade por Substrato , Trinitrobenzenos/síntese química , Trinitrobenzenos/metabolismo , Uridina Difosfato Galactose/síntese química , Uridina Difosfato Galactose/isolamento & purificação , Uridina Difosfato Galactose/metabolismoRESUMO
A number of mammalian sperm plasma membrane antigens have been implicated as playing a functional role in sperm-egg interaction, by virtue of the fact that antibodies against these antigens interfere with fertilization. Two such mouse sperm plasma membrane antigens are M42, a 200/220 kD glycoprotein doublet, and M5, a 150-160 kD glycoprotein. We show that both of these antigens are concentrated on the posterior region of caudal epididymal and capacitated mouse sperm heads and are relatively diffusible, as determined by fluorescence recovery after photobleaching measurements (D = 3-8 x 10(-9) cm2/s with approximately 23% diffusing). Crosslinking of these antigens with bivalent antibodies causes them to redistribute into the anterior region (acrosomal crescent) of the sperm head. In contrast, we describe a third antigen, P220, which is also localized to the posterior region of the sperm head on caudal epididymal sperm but which exhibits very little diffusion and does not redistribute upon crosslinking. Bivalent anti-M42 blocks the ZP3-induced acrosome reaction. We have found that monovalent Fab fragments of anti-M42 do not block the ZP3-induced acrosome reaction, but that inhibition is restored by addition of a second antibody which crosslinks the Fabs. Thus, crosslinking is required for both inhibition of the acrosome reaction and redistribution. This suggests that redistribution of antigen away from the posterior region of the head may be part of the mechanism of inhibition of the ZP3-induced acrosome reaction.
Assuntos
Proteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Acrossomo/metabolismo , Animais , Antígenos de Superfície/metabolismo , Feminino , Fertilização in vitro , Masculino , CamundongosRESUMO
Mammalian sperm plasma membranes, in contrast to those of mammalian somatic cells, exhibit a significant fraction of lipid that does not diffuse laterally in the plane of the membrane. This nondiffusing fraction results from lipid-lipid interactions. Similar nondiffusing fractions are found in mixed-lipid model systems that contain coexistent gel and fluid domains. These results suggest that the sperm plasma membrane may also exhibit lateral phase segregations of lipids and may contain significant amounts of gel-phase lipid. In this paper we use differential scanning calorimetry to show that, in contrast to the plasma membranes of mammalian somatic cells, the plasma membrane from the anterior region of the head of ram sperm exhibits at least two major endothermic transitions, one centered at approximately 26 degrees C and one centered at approximately 60 degrees C. The heats of these transitions are consistent with gel-to-fluid transitions in model membranes. These transitions are observed both in plasma membrane vesicles and in rehydrated lipid extracts made from these vesicles. These results demonstrate that at physiological temperatures the lipids of the ram sperm plasma membrane are segregated into coexistent fluid and gel domains. Since sperm encounter a wide range of temperatures during their development, these phase transitions may be important in establishing dynamic domains of lipid requisite for epididymal storage and fertilization.
Assuntos
Lipídeos de Membrana/análise , Fosfolipídeos/análise , Espermatozoides/análise , Animais , Varredura Diferencial de Calorimetria/métodos , Membrana Celular/análise , Colesterol/análise , Cromatografia em Camada Fina , Hexoses/análise , Masculino , Compostos Organofosforados/análise , OvinosRESUMO
ESA152 is a highly hydrophobic 18 kDa sialoglycoprotein, which becomes expressed on ram sperm in the proximal cauda epididymis. ESA 152 is expressed on all regions of the sperm surface, most strongly on the posterior region of the head, most weakly on the anterior region of the head. In this paper, we show that induction of the acrosome reaction with Ca2+ ionophore causes ESA152 to be redistributed from the posterior to the anterior region of the head plasma membrane. Cross-linking ESA152 with bivalent antibody causes similar redistribution and induces the acrosome reaction. Induction of the acrosome reaction with ESA152 antibody requires Ca2+ but is insensitive to (10 ng/ml) pertussis toxin.
Assuntos
Acrossomo/fisiologia , Sialoglicoproteínas/fisiologia , Cabeça do Espermatozoide/imunologia , Animais , Reações Antígeno-Anticorpo , Toxinas Bacterianas/metabolismo , Calcimicina/farmacologia , Cálcio , Membrana Celular/imunologia , Capeamento Imunológico , Masculino , Microscopia Eletrônica , Toxina Pertussis , Proteínas Citotóxicas Formadoras de Poros , Sialoglicoproteínas/imunologia , Cabeça do Espermatozoide/fisiologia , Espermatozoides , Fatores de Virulência de Bordetella/farmacologiaRESUMO
It has been hypothesized that signal transduction occurs by ligand-induced receptor clustering and immobilization. For many peptide receptors, cross-linking by anti-receptor antibodies is sufficient for receptor activation. This is not, however, the case for nerve growth factor receptor (NGFR). Using fluorescence microscopy and fluorescence recovery after photobleaching (FRAP), we have analyzed the distribution and diffusibility of NGFR on a series of cell lines. We have found the following: (1) Cells expressing high-affinity responsive NGFR's display clustered NGFR's even in the absence of ligand. In contrast, NGFR's in nonresponsive cell lines are diffusely distributed. (2) Receptors on responsive cell lines are largely nondiffusing while most receptors on nonresponsive cell lines are relatively free to diffuse. (3) NGF does not greatly alter the distribution or diffusion properties of the NGFR on either nonresponsive or responsive cell lines. Thus, NGFR is preclustered and immobile on responsive cells, which suggests that immobilization of NGFR prior to ligand binding is required for signal transduction.
Assuntos
Gânglios Espinais/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Anticorpos Monoclonais , Linhagem Celular , Embrião de Mamíferos , Microscopia de Fluorescência , Modelos Biológicos , Ratos , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Receptores de Fator de Crescimento Neural , TransfecçãoRESUMO
K252a and K252b are related protein kinase inhibitors that, dependent on conditions, can either inhibit or potentiate the effects of neurotrophic factors. K252a, an ester, is more potent and more cytotoxic on intact cells than K252b, a carboxylic acid. To understand better why these drugs elicit different degrees of biological responses, we analyzed their hydrophobicity, cell permeability, and subcellular distribution. As judged by partitioning between organic and aqueous phases, both compounds are hydrophobic. The partition coefficients were 15.6:1 (organic/aqueous phases) for K252a and 4.4:1 for K252b. The ratio of fluorescence excitation at 352 nm to that at 340 nm for the K252 compounds in the organic alcohol 1-decanol versus water provides a simple assay of binding of these compounds to phospholipid membranes. This ratio shifted for K252a, but not K252b, in the presence of phospholipid vesicles, indicating that K252a dissolved in the hydrophobic interior of the membrane. Using quantitative video fluorescence microscopy, we found that K252a strongly labeled both Sf9 insect cells and PC12 rat pheochromocytoma cells, probably staining intracellular membranes. The uptake of K252a was rapid and apparently irreversible. K252b also quickly entered Sf9 and PC12 cells, but staining was much weaker. Hence, K252a and K252b are similar in that they both rapidly enter cells but greatly differ in their membrane solubility.
Assuntos
Carbazóis/farmacologia , Fosfotransferases/antagonistas & inibidores , Animais , Carbazóis/química , Carbazóis/farmacocinética , Permeabilidade da Membrana Celular , Células Cultivadas , Alcaloides Indólicos , Membranas/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Células PC12 , Ratos , Solubilidade , SpodopteraRESUMO
It has been proposed that the high affinity nerve growth factor (NGF) receptor required for NGF response is a complex of two receptor proteins, gp75 and the tyrosine kinase TrkA, but direct biochemical or biophysical evidence has been lacking. We have previously shown using fluorescence recovery after photobleaching that gp75 is highly mobile on NGF-nonresponsive cells, but relatively immobile on NGF-responsive cells. In this report, we show that a physical interaction with TrkA causes gp75 immobilization. We found that gp75 is relatively mobile on TrkA negative nnr5 cells, a PC12 variant which is nonresponsive to NGF. In contrast, on T14 nnr5 cells (which bear a TrkA expression vector) gp75 is relatively immobile. Similarly, using baculoviruses to express gp75 and TrkA on Sf9 insect cells, we found that TrkA immobilizes gp75 molecules. The related receptor, TrkB, caused a more modest immobilization of gp75. Immobilization was found to require intact TrkA kinase and gp75 cytoplasmic domains, paralleling the requirements of high affinity binding of NGF. Analysis of gp75 diffusion coefficients indicates that mutated gp75 and TrkA molecules may form a complex, even in the absence of the ability to bind NGF with high affinity.