Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Neuroendocrinol ; 63: 100945, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461155

RESUMO

While cannabis has been used for centuries for its stress-alleviating properties, the effects of acute and chronic cannabinoid exposure on responses to stress remain poorly understood. This review provides an overview of studies that measured stress-related endpoints following acute or chronic cannabinoid exposure in humans and animals. Acute cannabinoid exposure increases basal concentrations of stress hormones in rodents and humans and has dose-dependent effects on stress reactivity in humans and anxiety-like behavior in rodents. Chronic cannabis exposure is associated with dampened stress reactivity, a blunted cortisol awakening response (CAR), and flattened diurnal cortisol slope in humans. Sex differences in these effects remain underexamined, with limited evidence for sex differences in effects of cannabinoids on stress reactivity in rodents. Future research is needed to better understand sex differences in the effects of cannabis on the stress response, as well as downstream impacts on mental health and stress-related disorders.


Assuntos
Canabinoides , Cannabis , Animais , Canabinoides/toxicidade , Cannabis/efeitos adversos , Feminino , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Masculino , Sistema Hipófise-Suprarrenal
2.
J Neurosci Res ; 100(3): 713-730, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34882838

RESUMO

Cannabis use during pregnancy has increased over the past few decades, with recent data indicating that, in youth and young adults especially, up to 22% of people report using cannabis during pregnancy. Animal models provide the ability to study prenatal cannabis exposure (PCE) with control over timing and dosage; however, these studies utilize both injection and inhalation approaches. While it is known that Δ9-tetrahydrocannabinol (THC; primary psychoactive component of cannabis) can cross the placenta, examination of the transmission and concentration of THC and its metabolites from maternal blood into the placenta and fetal brain remains relatively unknown, and the influence of route of administration has never been examined. Pregnant female rats were exposed to either vaporized THC-dominant cannabis extract for pulmonary consumption or subcutaneous injection of THC repeatedly during the gestational period. Maternal blood, placenta, and fetal brains were collected following the final administration of THC for analysis of THC and its metabolites, as well as endocannabinoid concentrations, through mass spectrometry. Both routes of administration resulted in the transmission of THC and its metabolites in placenta and fetal brain. Repeated exposure to inhaled THC vapor resulted in fetal brain THC concentrations that were about 30% of those seen in maternal blood, whereas repeated injections resulted in roughly equivalent concentrations of THC in maternal blood and fetal brain. Neither inhalation nor injection of THC during pregnancy altered fetal brain endocannabinoid concentrations. Our data provide the first characterization of maternal-fetal transmission of THC and its metabolites following both vaporized delivery and injection routes of administration. These data are important to establish the maternal-fetal transmission in preclinical injection and inhalation models of PCE and may provide insight into predicting fetal exposure in human studies.


Assuntos
Dronabinol , Placenta , Adolescente , Animais , Agonistas de Receptores de Canabinoides , Feminino , Humanos , Gravidez , Ratos
3.
J Neurosci ; 40(9): 1897-1908, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31953372

RESUMO

Recent trends in cannabis legalization have increased the necessity to better understand the effects of cannabis use. Animal models involving traditional cannabinoid self-administration approaches have been notoriously difficult to establish and differences in the drug used and its route of administration have limited the translational value of preclinical studies. To address this challenge in the field, we have developed a novel method of cannabis self-administration using response-contingent delivery of vaporized Δ9-tetrahydrocannabinol-rich (CANTHC) or cannabidiol-rich (CANCBD) whole-plant cannabis extracts. Male Sprague-Dawley rats were trained to nose-poke for discrete puffs of CANTHC, CANCBD, or vehicle (VEH) in daily 1 h sessions. Cannabis vapor reinforcement resulted in strong discrimination between active and inactive operanda. CANTHC maintained higher response rates under fixed ratio schedules and higher break points under progressive ratio schedules compared with CANCBD or VEH, and the number of vapor deliveries positively correlated with plasma THC concentrations. Moreover, metabolic phenotyping studies revealed alterations in locomotor activity, energy expenditure, and daily food intake that are consistent with effects in human cannabis users. Furthermore, both cannabis regimens produced ecologically relevant brain concentrations of THC and CBD and CANTHC administration decreased hippocampal CB1 receptor binding. Removal of CANTHC reinforcement (but not CANCBD) resulted in a robust extinction burst and an increase in cue-induced cannabis-seeking behavior relative to VEH. These data indicate that volitional exposure to THC-rich cannabis vapor has bona fide reinforcing properties and collectively support the utility of the vapor self-administration model for the preclinical assessment of volitional cannabis intake and cannabis-seeking behaviors.SIGNIFICANCE STATEMENT The evolving legal landscape concerning recreational cannabis use has increased urgency to better understand its effects on the brain and behavior. Animal models are advantageous in this respect; however, current approaches typically used forced injections of synthetic cannabinoids or isolated cannabis constituents that may not capture the complex effects of volitional cannabis consumption. We have developed a novel model of cannabis self-administration using response-contingent delivery of vaporized cannabis extracts containing high concentrations of Δ9 tetrahydrocannabinol (THC) or cannabidiol. Our data indicate that THC-rich cannabis vapor has reinforcing properties that support stable rates of responding and conditioned drug-seeking behavior. This approach will be valuable for interrogating effects of cannabis and delineating neural mechanisms that give rise to aberrant cannabis-seeking behavior.


Assuntos
Cannabis , Condicionamento Operante/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Extratos Vegetais/farmacologia , Reforço Psicológico , Animais , Encéfalo/metabolismo , Dronabinol/farmacocinética , Dronabinol/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Alucinógenos/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Fumar Maconha , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/efeitos dos fármacos
4.
Muscle Nerve ; 63(1): 120-126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094490

RESUMO

BACKGROUND: The goals of this study were to determine whether serum concentrations of endocannabinoids (eCB) and related lipids predict disease status in patients with amyotrophic lateral sclerosis (ALS) relative to healthy controls, and whether concentrations correlate with disease duration and severity. METHODS: Serum concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), and related lipids palmitoylethanolamine (PEA), oleoylethanolamine (OEA), and 2-oleoylglycerol (2-OG), were measured in samples from 47 patients with ALS and 19 healthy adults. Hierarchical binary logistic and linear regression analyses assessed whether lipid concentrations predicted disease status (ALS or healthy control), duration, or severity. RESULTS: Binary logistic regression revealed that, after controlling for age and gender, 2-AG, 2-OG and AEA concentrations were unique predictors of the presence of ALS, demonstrating odds ratios of 0.86 (P = .039), 1.03 (P = .023), and 42.17 (P = .026), respectively. When all five lipids and covariates (age, sex, race, ethnicity, body mass index, presence of a feeding tube) were included, the resulting model had an overall classification accuracy of 92.9%. Hierarchical linear regression analyses indicated that in patients with ALS, AEA and OEA inversely correlated with disease duration (P = .030 and .031 respectively), while PEA demonstrated a positive relationship with disease duration (P = .013). None of the lipids examined predicted disease severity. CONCLUSIONS: These findings support previous studies indicating significant alterations in concentrations of circulating lipids in patients with ALS. They suggest that arachidonic and oleic acid containing small lipids may serve as biomarkers for identifying the presence and duration of this disease.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Endocanabinoides/sangue , Lipídeos/sangue , Adulto , Ácidos Araquidônicos/sangue , Biomarcadores/sangue , Feminino , Glicerídeos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Alcamidas Poli-Insaturadas/sangue , Índice de Gravidade de Doença
5.
PLoS Comput Biol ; 16(10): e1008174, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001968

RESUMO

Metabolic inference from genomic sequence information is a necessary step in determining the capacity of cells to make a living in the world at different levels of biological organization. A common method for determining the metabolic potential encoded in genomes is to map conceptually translated open reading frames onto a database containing known product descriptions. Such gene-centric methods are limited in their capacity to predict pathway presence or absence and do not support standardized rule sets for automated and reproducible research. Pathway-centric methods based on defined rule sets or machine learning algorithms provide an adjunct or alternative inference method that supports hypothesis generation and testing of metabolic relationships within and between cells. Here, we present mlLGPR, multi-label based on logistic regression for pathway prediction, a software package that uses supervised multi-label classification and rich pathway features to infer metabolic networks in organismal and multi-organismal datasets. We evaluated mlLGPR performance using a corpora of 12 experimental datasets manifesting diverse multi-label properties, including manually curated organismal genomes, synthetic microbial communities and low complexity microbial communities. Resulting performance metrics equaled or exceeded previous reports for organismal genomes and identify specific challenges associated with features engineering and training data for community-level metabolic inference.


Assuntos
Genômica/métodos , Aprendizado de Máquina , Redes e Vias Metabólicas/genética , Algoritmos , Bases de Dados Genéticas , Modelos Logísticos , Proteobactérias/genética , Proteobactérias/metabolismo , Software
6.
J Neurophysiol ; 124(5): 1388-1398, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965166

RESUMO

Vagal afferent neurons abundantly express excitatory transient receptor potential (TRP) channels, which strongly influence afferent signaling. Cannabinoids have been identified as direct agonists of TRP channels, including TRPA1 and TRPV1, suggesting that exogenous cannabinoids may influence vagal signaling via TRP channel activation. The diverse therapeutic effects of electrical vagus nerve stimulation also result from administration of the nonpsychotropic cannabinoid, cannabidiol (CBD); however, the direct effects of CBD on vagal afferent signaling remain unknown. We investigated actions of CBD on vagal afferent neurons, using calcium imaging and electrophysiology. CBD produced strong excitatory effects in neurons expressing TRPA1. CBD responses were prevented by removal of bath calcium, ruthenium red, and the TRPA1 antagonist A967079, but not the TRPV1 antagonist SB366791, suggesting an essential role for TRPA1. These pharmacological experiments were confirmed using genetic knockouts where TRPA1 KO mice lacked CBD responses, whereas TRPV1 knockout (KO) mice exhibited CBD-induced activation. We also characterized CBD-provoked inward currents at resting potentials in vagal afferents expressing TRPA1 that were absent in TRPA1 KO mice, but persisted in TRPV1 KO mice. CBD also inhibited voltage-activated sodium conductances in A-fiber, but not in C-fiber afferents. To simulate adaptation, resulting from chronic cannabis use, we administered cannabis extract vapor daily for 3 wk. Cannabis exposure reduced the magnitude of CBD responses, likely due to a loss of TRPA1 signaling. Together, these findings detail a novel excitatory action of CBD at vagal afferent neurons, which requires TRPA1 and may contribute to the vagal mimetic effects of CBD and adaptation following chronic cannabis use.NEW & NOTEWORTHY CBD usage has increased with its legalization. The clinical efficacy of CBD has been demonstrated for conditions including some forms of epilepsy, depression, and anxiety that are also treatable by vagus nerve stimulation. We found CBD exhibited direct excitatory effects on vagal afferent neurons that required TRPA1, were augmented by TRPV1, and attenuated following chronic cannabis vapor exposure. These effects may contribute to vagal mimetic effects of CBD and adaptation after chronic cannabis use.


Assuntos
Canabidiol/administração & dosagem , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Nervo Vago/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos Knockout , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Imagem Óptica , Ratos Sprague-Dawley , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética , Nervo Vago/efeitos dos fármacos
7.
J Neurosci ; 35(9): 3879-92, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740517

RESUMO

Corticotropin-releasing hormone (CRH) is a central integrator in the brain of endocrine and behavioral stress responses, whereas activation of the endocannabinoid CB1 receptor suppresses these responses. Although these systems regulate overlapping functions, few studies have investigated whether these systems interact. Here we demonstrate a novel mechanism of CRH-induced anxiety that relies on modulation of endocannabinoids. Specifically, we found that CRH, through activation of the CRH receptor type 1 (CRHR1), evokes a rapid induction of the enzyme fatty acid amide hydrolase (FAAH), which causes a reduction in the endocannabinoid anandamide (AEA), within the amygdala. Similarly, the ability of acute stress to modulate amygdala FAAH and AEA in both rats and mice is also mediated through CRHR1 activation. This interaction occurs specifically in amygdala pyramidal neurons and represents a novel mechanism of endocannabinoid-CRH interactions in regulating amygdala output. Functionally, we found that CRH signaling in the amygdala promotes an anxious phenotype that is prevented by FAAH inhibition. Together, this work suggests that rapid reductions in amygdala AEA signaling following stress may prime the amygdala and facilitate the generation of downstream stress-linked behaviors. Given that endocannabinoid signaling is thought to exert "tonic" regulation on stress and anxiety responses, these data suggest that CRH signaling coordinates a disruption of tonic AEA activity to promote a state of anxiety, which in turn may represent an endogenous mechanism by which stress enhances anxiety. These data suggest that FAAH inhibitors may represent a novel class of anxiolytics that specifically target stress-induced anxiety.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ácidos Araquidônicos/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Amidoidrolases/metabolismo , Animais , Hidrólise , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
8.
J Food Prot ; 87(7): 100283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679200

RESUMO

This review focuses on the potential direct physical, chemical, and microbiological contamination from disposable gloves when utilized in food environments, inclusive of the risks posed to food products as well as worker safety. Unrecognized problems endemic to glove manufacturing were magnified during the COVID-19 pandemic due to high demand, increased focus on PPE performance, availability, supply chain instability, and labor shortages. Multiple evidence-based reports of contamination, toxicity, illness, deaths, and related regulatory action linked to contaminated gloves in food and healthcare have highlighted problems indicative of systemic glove industry shortcomings. The glove manufacturing process was diagramed with sources and pathways of contamination identified, indicating weak points with documented occurrences detailed. Numerous unsafe ingredients can introduce chemical contaminants, potentially posing risks to food and to glove users. Microbial hazards present significant challenges to overall glove safety as contaminants appear to be introduced via polluted water sources or flawed glove manufacturing processes, resulting in increased risks within food and healthcare environments. Frank and opportunistic pathogens along with food spoilage organisms can be introduced to foods and wearers. When the sources and pathways of glove-borne contamination were explored, it was found that physical failures play a pivotal role in the release of sweat build-up, liquefaction of chemical residues, and incubation of microbial contaminants from hands and gloves. Thus, with glove physical integrity issues, including punctures in new, unused gloves that can develop into significant rips and tears, not only can direct physical food contamination occur but also chemical and microbiological contamination can find their way into food. Enhanced regulatory requirements for Acceptable Quality Limits of food-grade gloves, and the establishment of appropriate bioburden standards would enhance safety in food applications. Based on the information provided, together with a false sense of security associated with glove use, the unconditional belief in glove chemical and microbiological purity may be unfounded.


Assuntos
COVID-19 , Luvas Protetoras , Humanos , Luvas Protetoras/microbiologia , Contaminação de Alimentos/análise , SARS-CoV-2 , Microbiologia de Alimentos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38190273

RESUMO

Introduction: Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. Materials and Methods: We used a response-contingent vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Results: Adolescent (35- to 55-day-old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared with adolescent males. In adulthood (70-110 days old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared with vehicle rats, thereby indicating sex differences in behavioral flexibility impairments. Notably, sex-treatment interactions were not observed when rats of each sex were exposed to a noncontingent CANTHC vapor dosing regimen that approximated CANTHC vapor deliveries earned by females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no changes in myelin basic protein expression or dendritic spine density. Conclusion: Altogether, these data reveal important sex differences in rates of responding for CANTHC vapor in adolescence that may confer enduring alterations to mPFC structure and function and suggest that there may be subtle differences in the effects of response-contingent versus noncontingent cannabis exposure that should be systematically examined in future studies.

10.
Nat Neurosci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778146

RESUMO

The study of complex behaviors is often challenging when using manual annotation due to the absence of quantifiable behavioral definitions and the subjective nature of behavioral annotation. Integration of supervised machine learning approaches mitigates some of these issues through the inclusion of accessible and explainable model interpretation. To decrease barriers to access, and with an emphasis on accessible model explainability, we developed the open-source Simple Behavioral Analysis (SimBA) platform for behavioral neuroscientists. SimBA introduces several machine learning interpretability tools, including SHapley Additive exPlanation (SHAP) scores, that aid in creating explainable and transparent behavioral classifiers. Here we show how the addition of explainability metrics allows for quantifiable comparisons of aggressive social behavior across research groups and species, reconceptualizing behavior as a sharable reagent and providing an open-source framework. We provide an open-source, graphical user interface (GUI)-driven, well-documented package to facilitate the movement toward improved automation and sharing of behavioral classification tools across laboratories.

11.
Proc Natl Acad Sci U S A ; 107(20): 9406-11, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439721

RESUMO

Secretion of glucocorticoid hormones during stress produces an array of physiological changes that are adaptive and beneficial in the short term. In the face of repeated stress exposure, however, habituation of the glucocorticoid response is essential as prolonged glucocorticoid secretion can produce deleterious effects on metabolic, immune, cardiovascular, and neurobiological function. Endocannabinoid signaling responds to and regulates the activity of the hypothalamic-pituitary-adrenal (HPA) axis that governs the secretion of glucocorticoids; however, the role this system plays in adaptation of the neuroendocrine response to repeated stress is not well characterized. Herein, we demonstrate a divergent regulation of the two endocannabinoid ligands, N-arachidonylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), following repeated stress such that AEA content is persistently decreased throughout the corticolimbic stress circuit, whereas 2-AG is exclusively elevated within the amygdala in a stress-dependent manner. Pharmacological studies demonstrate that this divergent regulation of AEA and 2-AG contribute to distinct forms of HPA axis habituation. Inhibition of AEA hydrolysis prevented the development of basal hypersecretion of corticosterone following repeated stress. In contrast, systemic or intra-amygdalar administration of a CB(1) receptor antagonist before the final stress exposure prevented the repeated stress-induced decline in corticosterone responses. The present findings demonstrate an important role for endocannabinoid signaling in the process of stress HPA habituation, and suggest that AEA and 2-AG modulate different components of the adrenocortical response to repeated stressor exposure.


Assuntos
Adaptação Fisiológica/fisiologia , Moduladores de Receptores de Canabinoides/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Análise de Variância , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/farmacologia , Benzamidas/farmacologia , Carbamatos/farmacologia , Corticosterona/sangue , Endocanabinoides , Masculino , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
12.
Pain ; 164(9): 2036-2047, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37027147

RESUMO

ABSTRACT: Although preclinical studies generally report robust antinociceptive effects of cannabinoids in rodent persistent pain models, randomized controlled trials in chronic pain patients report limited pain relief from cannabis/cannabinoids. Differences between animal and human studies that may contribute to these discrepant findings include route of cannabis/cannabinoid administration, type of cannabis/cannabinoid, and how pain is measured. To address these factors, rats with complete Freund adjuvant (CFA)-induced hind paw inflammation were exposed acutely or repeatedly to vaporized cannabis extract that was either tetrahydrocannabinol (THC) or cannabidiol (CBD)dominant. One measure of evoked pain (mechanical threshold), 2 functional measures of pain (hind paw weight-bearing, and locomotor activity), and hind paw edema were assessed for up to 2 hours after vapor exposure. Acute exposure to vaporized THC-dominant extract (200 or 400 mg/mL) decreased mechanical allodynia and hind paw edema and increased hind paw weight-bearing and locomotor activity, with no sex differences. After repeated exposure to vaporized THC-dominant extract (twice daily for 3 days), only the antiallodynic effect was significant. Acute exposure to vaporized CBD-dominant cannabis extract (200 mg/mL) did not produce any effects in either sex; repeated exposure to this extract (100, 200, or 400 mg/mL) decreased mechanical allodynia in male rats only. Sex differences (or lack thereof) in the effects of vaporized cannabis extracts were not explained by sex differences in plasma levels of THC, CBD, or their major metabolites. These results suggest that although vaporized THC-dominant extract is likely to be modestly effective against inflammatory pain in both male and female rats, tolerance may develop, and the CBD-dominant extract may be effective only in male rats.


Assuntos
Canabidiol , Canabinoides , Cannabis , Dor Crônica , Humanos , Ratos , Masculino , Feminino , Animais , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Canabinoides/efeitos adversos , Agonistas de Receptores de Canabinoides , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Edema/induzido quimicamente
13.
Nat Commun ; 14(1): 5380, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666802

RESUMO

Anaerobic digestion of municipal mixed sludge produces methane that can be converted into renewable natural gas. To improve economics of this microbial mediated process, metabolic interactions catalyzing biomass conversion to energy need to be identified. Here, we present a two-year time series associating microbial metabolism and physicochemistry in a full-scale wastewater treatment plant. By creating a co-occurrence network with thousands of time-resolved microbial populations from over 100 samples spanning four operating configurations, known and novel microbial consortia with potential to drive methane production were identified. Interactions between these populations were further resolved in relation to specific process configurations by mapping metagenome assembled genomes and cognate gene expression data onto the network. Prominent interactions included transcriptionally active Methanolinea methanogens and syntrophic benzoate oxidizing Syntrophorhabdus, as well as a Methanoregulaceae population and putative syntrophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae) expressing the glycine cleavage bypass of the Wood-Ljungdahl pathway.


Assuntos
Metagenoma , Águas Residuárias , Consórcios Microbianos/genética , Esgotos , Metano
14.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711651

RESUMO

Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. To this end, we used a novel volitional vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Adolescent (35-55 day old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared to adolescent males. In adulthood (70-110 day old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared to vehicle rats. Similar set-shifting deficits were observed in males when they were exposed to a non-contingent CANTHC vapor dosing regimen that approximated CANTHC self-administration rates in females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no significant changes in myelin basic protein expression or dendritic spine density. Together, these data reveal important sex differences in rates of cannabis vapor self-administration in adolescence that confer enduring alterations to mPFC structure and function. Importantly, female-specific deficits in behavioral flexibility appear to be driven by elevated rates of CANTHC self-administration as opposed to a sex difference in the effects of CANTHC vapor per se.

15.
J Struct Funct Genomics ; 13(2): 101-10, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22270457

RESUMO

The KB-Rank tool was developed to help determine the functions of proteins. A user provides text query and protein structures are retrieved together with their functional annotation categories. Structures and annotation categories are ranked according to their estimated relevance to the queried text. The algorithm for ranking first retrieves matches between the query text and the text fields associated with the structures. The structures are next ordered by their relative content of annotations that are found to be prevalent across all the structures retrieved. An interactive web interface was implemented to navigate and interpret the relevance of the structures and annotation categories retrieved by a given search. The aim of the KB-Rank tool is to provide a means to quickly identify protein structures of interest and the annotations most relevant to the queries posed by a user. Informational and navigational searches regarding disease topics are described to illustrate the tool's utilities. The tool is available at the URL http://protein.tcmedc.org/KB-Rank.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular/métodos , Conformação Proteica , Análise de Sequência de Proteína/métodos , Software , Algoritmos , Animais , Biologia Computacional/métodos , Humanos , Internet , Modelos Moleculares , Proteínas/análise , Proteínas/química , Ferramenta de Busca , Relação Estrutura-Atividade
16.
J Neurosci ; 31(29): 10506-15, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21775596

RESUMO

The mechanisms subserving the ability of glucocorticoid signaling within the medial prefrontal cortex (mPFC) to terminate stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis are not well understood. We report that antagonism of the cannabinoid CB(1) receptor locally within the mPFC prolonged corticosterone secretion following cessation of stress in rats. Mice lacking the CB(1) receptor exhibited a similar prolonged response to stress. Exposure of rats to stress produced an elevation in the endocannabinoid 2-arachidonoylglycerol within the mPFC that was reversed by pretreatment with the glucocorticoid receptor antagonist RU-486 (20 mg/kg). Electron microscopic and electrophysiological data demonstrated the presence of CB(1) receptors in inhibitory-type terminals impinging upon principal neurons within layer V of the prelimbic region of the mPFC. Bath application of corticosterone (100 nm) to prefrontal cortical slices suppressed GABA release onto principal neurons in layer V of the prelimbic region, when examined 1 h later, which was prevented by application of a CB(1) receptor antagonist. Collectively, these data demonstrate that the ability of stress-induced glucocorticoid signaling within mPFC to terminate HPA axis activity is mediated by a local recruitment of endocannabinoid signaling. Endocannabinoid activation of CB(1) receptors decreases GABA release within the mPFC, likely increasing the outflow of the principal neurons of the prelimbic region to contribute to termination of the stress response. These data support a model in which endocannabinoid signaling links glucocorticoid receptor engagement to activation of corticolimbic relays that inhibit corticosterone secretion.


Assuntos
Ácidos Araquidônicos/metabolismo , Glicerídeos/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Corticosterona/farmacologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Endocanabinoides , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Antagonistas de Hormônios/farmacologia , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mifepristona/farmacologia , Técnicas de Patch-Clamp/métodos , Piperidinas/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/deficiência , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Ácido gama-Aminobutírico/metabolismo
17.
Int J Neuropsychopharmacol ; 15(9): 1319-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22053980

RESUMO

Despite the growing non-medical consumption of amphetamine (Amph) during adolescence, its long-term neurobiological and behavioural effects have remained largely unexplored. The present research sought to characterize the behavioural profile and electrophysiological properties of midbrain monoaminergic neurons in adult rodents after Amph exposure during adolescence. Adolescent rats were administered vehicle, 0.5, 1.5, or 5.0 mg/kg.d Amph from postnatal day (PND) 30-50. At adulthood (PND 70), rats were tested in an open-field test (OFT) and elevated plus maze (EPM), paralleled by in-vivo extracellular recordings of serotonin (5-HT), dopamine (DA) and norepinephrine (NE) neurons from the dorsal raphe nucleus, ventral tegmental area, and locus coeruleus, respectively. 5-HT firing in adulthood was increased in rats that had received Amph (1.5 mg/kg.d) during adolescence. At this regimen, DA firing activity was increased, but not NE firing. Conversely, the highest Amph dose regimen (5.0 mg/kg.d) enhanced NE firing, but not DA or 5-HT firing rates. In the OFT, Amph (1.5 mg/kg.d) significantly increased the total distance travelled, while the other doses were ineffective. In the EPM, all three Amph doses increased time spent in the open arms and central platform, as well as the number of stretch-attend postures made. Repeated adolescent exposure to Amph differentially augments monoaminergic neuronal firing in a dose-specific fashion in adulthood, with corresponding alterations in locomotion, risk assessment (stretch-attend postures and central platform occupancy) and risk-taking behaviours (open-arm exploration). Thus, adolescent Amph exposure induces long-lasting neurophysiological alterations that may have implications for drug-seeking behaviour in the future.


Assuntos
Anfetamina/farmacologia , Comportamento Animal/efeitos dos fármacos , Monoaminas Biogênicas/fisiologia , Estimulantes do Sistema Nervoso Central/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Ansiedade/psicologia , Dopamina/fisiologia , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Locus Cerúleo/fisiologia , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Norepinefrina/fisiologia , Gravidez , Núcleos da Rafe/fisiologia , Ratos , Ratos Sprague-Dawley , Assunção de Riscos , Serotonina/fisiologia , Área Tegmentar Ventral/fisiologia
18.
J Struct Funct Genomics ; 12(1): 9-20, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21445639

RESUMO

The three dimensional atomic structures of proteins provide information regarding their function; and codified relationships between structure and function enable the assessment of function from structure. In the current study, a new data mining tool was implemented that checks current gene ontology (GO) annotations and predicts new ones across all the protein structures available in the Protein Data Bank (PDB). The tool overcomes some of the challenges of utilizing large amounts of protein annotation and measurement information to form correspondences between protein structure and function. Protein attributes were extracted from the Structural Biology Knowledgebase and open source biological databases. Based on the presence or absence of a given set of attributes, a given protein's functional annotations were inferred. The results show that attributes derived from the three dimensional structures of proteins enhanced predictions over that using attributes only derived from primary amino acid sequence. Some predictions reflected known but not completely documented GO annotations. For example, predictions for the GO term for copper ion binding reflected used information a copper ion was known to interact with the protein based on information in a ligand interaction database. Other predictions were novel and require further experimental validation. These include predictions for proteins labeled as unknown function in the PDB. Two examples are a role in the regulation of transcription for the protein AF1396 from Archaeoglobus fulgidus and a role in RNA metabolism for the protein psuG from Thermotoga maritima.


Assuntos
Proteínas/química , Proteínas/metabolismo , Árvores de Decisões , Modelos Estatísticos , Simulação de Dinâmica Molecular , Conformação Proteica , Relação Estrutura-Atividade
19.
Psychoneuroendocrinology ; 124: 105063, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249332

RESUMO

Previous research indicates that circulating concentrations of cortisol increase during interactions with opposite-sex others in the presence of mating cues. However, it remains unknown whether this phenomenon extends to work-related tasks in which explicit mating cues are absent. In a series of two studies, we assessed women's and men's salivary cortisol concentrations before and after completing a cooperative brainstorming (Study 1) and competitive negotiation (Study 2) task wherein they worked with same- or opposite-sex partners. Both studies revealed significant participant sex by partner sex interactions. Specifically, male participants demonstrated significantly larger increases in salivary cortisol concentrations when working alongside opposite-sex as opposed to same-sex partners on a cooperative task. In contrast, female participants demonstrated significantly larger increases in salivary cortisol concentrations when working with opposite-sex as opposed to same-sex partners on a competitive task. Opposite-sex teams also produced fewer novel ideas relative to same-sex teams on the cooperative brainstorming task; however, differences in cortisol did not account for this effect. Our research extends previous research demonstrating elevated cortisol during opposite-sex interactions in the presence of explicit mating cues to a work-related context that is divorced from mating cues.


Assuntos
Hidrocortisona , Parceiros Sexuais , Sinais (Psicologia) , Feminino , Humanos , Masculino , Homens
20.
J Comput Biol ; 28(11): 1075-1103, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520674

RESUMO

Machine learning provides a probabilistic framework for metabolic pathway inference from genomic sequence information at different levels of complexity and completion. However, several challenges, including pathway features engineering, multiple mapping of enzymatic reactions, and emergent or distributed metabolism within populations or communities of cells, can limit prediction performance. In this article, we present triUMPF (triple non-negative matrix factorization [NMF] with community detection for metabolic pathway inference), which combines three stages of NMF to capture myriad relationships between enzymes and pathways within a graph network. This is followed by community detection to extract a higher-order structure based on the clustering of vertices that share similar statistical properties. We evaluated triUMPF performance by using experimental datasets manifesting diverse multi-label properties, including Tier 1 genomes from the BioCyc collection of organismal Pathway/Genome Databases and low complexity microbial communities. Resulting performance metrics equaled or exceeded other prediction methods on organismal genomes with improved precision on multi-organismal datasets.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Redes e Vias Metabólicas , Algoritmos , Proteínas de Bactérias/genética , Análise por Conglomerados , Aprendizado de Máquina , Microbiota
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa