Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 597(7878): 698-702, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526714

RESUMO

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Animais , Antibacterianos/química , Compostos Aza/química , Compostos Aza/farmacologia , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases
2.
Antimicrob Agents Chemother ; 68(5): e0169823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567976

RESUMO

Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe, difficult-to-treat infections that are frequently antibiotic resistant. Sulbactam-durlobactam (SUL-DUR) is a targeted ß-lactam/ß-lactamase inhibitor combination antibiotic designed to treat ABC infections, including those caused by multidrug-resistant strains. In a global, pathogen-specific, randomized, controlled phase 3 trial (ATTACK), the efficacy and safety of SUL-DUR were compared to colistin, both dosed with imipenem-cilastatin as background therapy, in patients with serious infections caused by carbapenem-resistant ABC. Results from ATTACK showed that SUL-DUR met the criteria for non-inferiority to colistin for the primary efficacy endpoint of 28-day all-cause mortality with improved clinical and microbiological outcomes compared to colistin. This report describes the characterization of the baseline ABC isolates from patients enrolled in ATTACK, including an analysis of the correlation of microbiological outcomes with SUL-DUR MIC values and the molecular drivers of SUL-DUR resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Colistina , Testes de Sensibilidade Microbiana , Sulbactam , Humanos , Masculino , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter calcoaceticus/efeitos dos fármacos , Acinetobacter calcoaceticus/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Combinação Imipenem e Cilastatina/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Sulbactam/uso terapêutico , Sulbactam/farmacologia
3.
Antimicrob Agents Chemother ; 68(1): e0080023, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092671

RESUMO

Multi-drug resistant (MDR) Acinetobacter baumannii is emerging as a pathogen of increasing prevalence and concern. Infections associated with this Gram-negative pathogen are often associated with increased morbidity and mortality and few therapeutic options. The ß-lactamase inhibitor sulbactam used commonly in combination with ampicillin demonstrates intrinsic antibacterial activity against A. baumannii acting as an inhibitor of PBP1 and PBP3, which participate in cell wall biosynthesis. The production of ß-lactamases, particularly class D oxacillinases, however, has limited the utility of sulbactam resorting to increased doses and the need for alternate therapies. Durlobactam is a non-ß-lactam ß-lactamase inhibitor that demonstrates broad ß-lactamase inhibition including class D enzymes produced by A. baumannii and has shown potent in vitro activity against MDR A. baumannii, particularly carbapenem-resistant isolates in susceptibility and pharmacodynamic model systems. The objective of this study is to evaluate the exposure-response relationship of sulbactam and durlobactam in combination using in vivo neutropenic thigh and lung models to establish PK/PD exposure magnitudes to project clinically effective doses. Utilizing established PK/PD determinants of %T>MIC and AUC/MIC for sulbactam and durlobactam, respectively, non-linear regressional analysis of drug exposure was evaluated relative to the 24-hour change in bacterial burden (log10 CFU/g). Co-modeling of the data across multiple strains exhibiting a broad range of MIC susceptibility suggested net 1-log10 CFU/g0 reduction can be achieved when sulbactam T>MIC exceeds 50% of the dosing interval and durlobactam AUC/MIC is 10. These data were ultimately used to support sulbactam-durlobactam dose selection for Phase 3 clinical trials.


Assuntos
Acinetobacter baumannii , Sulbactam , Sulbactam/uso terapêutico , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
4.
Antimicrob Agents Chemother ; 68(1): e0031223, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092676

RESUMO

Infections caused by Acinetobacter baumannii are increasingly multidrug resistant and associated with high rates of morbidity and mortality. Sulbactam is a ß-lactamase inhibitor with intrinsic antibacterial activity against A. baumannii. Durlobactam is a non-ß-lactam ß-lactamase inhibitor with an extended spectrum of activity compared to other inhibitors of its class. In vitro pharmacodynamic infection models were undertaken to establish the pharmacokinetic/pharmacodynamic (PK/PD) index and magnitudes associated with sulbactam and durlobactam efficacy and to simulate epithelial lining fluid (ELF) exposures at clinical doses to understand sulbactam-durlobactam activity with and without co-administration of a carbapenem. Hollow fiber infection models (HFIMs) and one-compartment systems were used to identify the PK/PD indices and exposure magnitudes associated of 1-log10 and 2-log10 colony-forming unit (CFU)/mL reductions. Sulbactam and durlobactam demonstrated PK/PD drivers of % time above the minimum inhibition concentration (%T > MIC) and area under the plasma concentration-time curve from time 0 to 24 h (AUC0-24)/MIC, respectively. Against a sulbactam-susceptible strain, sulbactam %T > MIC of 71.5 and 82.0 were associated with 1-log10 and 2-log10 CFU/mL reductions, respectively, in the HFIM. Against a non-susceptible strain, durlobactam restored the activity of sulbactam with an AUC0-24/MICs of 34.0 and 46.8 using a polysulfone cartridge to achieve a 1-log10 and 2-log10 CFU/mL reduction. These magnitudes were reduced to 13.8 and 24.2, respectively, using a polyvinylidene fluoride cartridge with a membrane pore size of 0.1 µm. In the one-compartment model, durlobactam AUC0-24/MIC to achieve 1-log10 and 2-log10 CFU/mL reduction were 7.6 and 33.4, respectively. Simulations of clinical ELF exposures in the HFIM showed cidal activity at MICs ≤4 µg/mL. Penicillin binding protein 3 mutant strains with MICs of 8 µg/mL may benefit from the addition of a carbapenem at clinical exposures.


Assuntos
Acinetobacter baumannii , Sulbactam , Sulbactam/farmacologia , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
5.
J Clin Microbiol ; 62(1): e0122823, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38095417

RESUMO

Sulbactam-durlobactam is a ß-lactam/ß-lactamase inhibitor combination developed to treat hospital-acquired and ventilator-associated bacterial pneumonia caused by Acinetobacter baumannii-calcoaceticus complex (ABC). Durlobactam is a diazabicyclooctane ß-lactamase inhibitor with potent activity against Ambler classes A, C, and D serine ß-lactamases and restores sulbactam activity against multidrug-resistant ABC. Studies were conducted to establish sulbactam-durlobactam antimicrobial susceptibility testing methods for both broth microdilution minimal inhibitory concentration (MIC) and disk diffusion tests as well as quality control (QC) ranges. To establish the MIC test method, combinations of sulbactam and durlobactam were evaluated using a panel of genetically characterized A. baumannii isolates which were categorized as predicted to be susceptible or resistant based on the spectrum of ß-lactamase inhibition by durlobactam. MIC testing with doubling dilutions of sulbactam with a fixed concentration of 4 µg/mL of durlobactam resulted in the greatest discrimination of the pre-defined susceptible and resistant strains. Similarly, the sulbactam/durlobactam 10/10 µg disk concentration showed the best discrimination as well as correlation with the MIC test. A. baumannii NCTC 13304 was selected for QC purposes because it assesses the activity of both sulbactam and durlobactam with clear endpoints. Multi-laboratory QC studies were conducted according to CLSI M23 Tier 2 criteria. A sulbactam-durlobactam broth MIC QC range of 0.5/4-2/4 µg/mL and a zone diameter QC range of 24-30 mm were determined for A. baumannii NCTC 13304 and have been approved by CLSI. These studies will enable clinical laboratories to perform susceptibility tests with accurate and reproducible methods.


Assuntos
Acinetobacter baumannii , Compostos Azabicíclicos , Sulbactam , Humanos , Sulbactam/farmacologia , Sulbactam/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Testes de Sensibilidade Microbiana , Controle de Qualidade , Combinação de Medicamentos
6.
Clin Infect Dis ; 76(Suppl 2): S194-S201, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125470

RESUMO

Sulbactam-durlobactam is a pathogen-targeted ß-lactam/ß-lactamase inhibitor combination in late-stage development for the treatment of Acinetobacter infections, including those caused by multidrug-resistant strains. Durlobactam is a member of the diazabicyclooctane class of ß-lactamase inhibitors with broad-spectrum serine ß-lactamase activity. Sulbactam is a first-generation, narrow-spectrum ß-lactamase inhibitor that also has intrinsic antibacterial activity against Acinetobacter spp. due to its ability to inhibit penicillin-binding proteins 1 and 3. The clinical utility of sulbactam for the treatment of contemporary Acinetobacter infections has been eroded over the last decades due to its susceptibility to cleavage by numerous ß-lactamases present in this species. However, when combined with durlobactam, the activity of sulbactam is restored against this problematic pathogen. The following summary describes what is known about the molecular drivers of activity and resistance as well as results from surveillance and in vivo efficacy studies for this novel combination.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Sulbactam/farmacologia , Sulbactam/uso terapêutico , Sulbactam/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
7.
Antimicrob Agents Chemother ; 67(11): e0066523, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37843305

RESUMO

Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe infections that are difficult to treat due to pre-existing antibiotic resistance. Sulbactam-durlobactam (SUL-DUR) is a targeted ß-lactam/ß-lactamase inhibitor combination antibiotic designed to treat serious infections caused by Acinetobacter, including multidrug- and carbapenem-resistant strains. In a recent global surveillance study of 5,032 ABC clinical isolates collected from 2016 to 2021, less than 2% of ABC isolates had SUL-DUR MIC values >4 µg/mL. Molecular characterization of these isolates confirmed the primary drivers of resistance are metallo-ß-lactamases or penicillin-binding protein 3 (PBP3) mutations, as previously described. In addition, this study shows that certain common PBP3 variants, such as A515V, are insufficient to confer sulbactam resistance and that the efflux of durlobactam by AdeIJK is likely to play a role in a subset of strains.


Assuntos
Acinetobacter baumannii , Sulbactam , Sulbactam/farmacologia , Sulbactam/uso terapêutico , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Monobactamas , Testes de Sensibilidade Microbiana
8.
Antimicrob Agents Chemother ; 66(9): e0078122, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005804

RESUMO

Sulbactam-durlobactam is a ß-lactam-ß-lactamase inhibitor combination designed to treat serious Acinetobacter baumannii-calcoaceticus complex (ABC) infections, including carbapenem-non-susceptible and multidrug-resistant (MDR) isolates. The current study characterized the in vitro activity of sulbactam-durlobactam against a collection of 5,032 ABC clinical isolates collected in 33 countries across the Asia/South Pacific region, Europe, Latin America, the Middle East, and North America from 2016 to 2021. The sulbactam-durlobactam MIC50 and MIC90 were 1 and 2 µg/mL, respectively, for all ABC isolates tested. The addition of durlobactam (at a fixed concentration of 4 µg/mL) to sulbactam decreased its MIC50 by 8-fold (from 8 to 1 µg/mL) and its MIC90 by 32-fold (from 64 to 2 µg/mL) for all ABC isolates. The in vitro activity of sulbactam-durlobactam was maintained across individual ABC species, years, global regions of collection, specimen sources, and resistance phenotypes, including MDR and extensively drug-resistant (XDR) isolates. At 4 µg/mL (preliminary sulbactam-durlobactam susceptible MIC breakpoint), sulbactam-durlobactam inhibited 98.3% of all ABC isolates and >96% of sulbactam-, imipenem-, ciprofloxacin-, amikacin-, and minocycline-non-susceptible isolates; as well as colistin-resistant, MDR, and XDR isolates. Most imipenem-non-susceptible ABC isolates (96.8%, 2,488/2,570) were carbapenem-resistant A. baumannii (CRAB); 96.9% (2,410/2,488) of CRAB isolates were sulbactam-durlobactam-susceptible. More than 80% of ABC isolates had sulbactam-durlobactam MIC values that were ≥2 doubling-dilutions (4-fold) lower than sulbactam alone. Only 1.7% (84/5,032) of ABC isolates from 2016 to 2021 had sulbactam-durlobactam MIC values of >4 µg/mL. Of the 84 isolates, 94.0% were A. baumannii, 4.8% were A. pittii, and 1.2% were A. nosocomialis. In summary, sulbactam-durlobactam demonstrated potent antibacterial activity against a 2016 to 2021 collection of geographically diverse clinical isolates of ABC isolates, including carbapenem-non-susceptible and MDR isolates.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Amicacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Ciprofloxacina/uso terapêutico , Colistina/farmacologia , Combinação de Medicamentos , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Sulbactam/farmacologia , Sulbactam/uso terapêutico , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico
9.
Artigo em Inglês | MEDLINE | ID: mdl-31988095

RESUMO

Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a ß-lactam-ß-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 µg/ml compared to a MIC50/MIC90 of 8/64 µg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 µg/ml revealed that these strains encoded either the metallo-ß-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Sulbactam/farmacologia , Acinetobacter/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Infecções Comunitárias Adquiridas/microbiologia , Combinação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-29133555

RESUMO

The novel diazabicyclooctenone ETX2514 is a potent, broad-spectrum serine ß-lactamase inhibitor that restores sulbactam activity against resistant Acinetobacter baumannii The frequency of spontaneous resistance to sulbactam-ETX2514 in clinical isolates was found to be 7.6 × 10-10 to <9.0 × 10-10 at 4× MIC and mapped to residues near the active site of penicillin binding protein 3 (PBP3). Purified mutant PBP3 proteins demonstrated reduced affinity for sulbactam. In a sulbactam-sensitive isolate, resistance also mapped to stringent response genes associated with resistance to PBP2 inhibitors, suggesting that in addition to ß-lactamase inhibition, ETX2514 may enhance sulbactam activity in A. baumannii via inhibition of PBP2.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Sulbactam/farmacologia , Inibidores de beta-Lactamases/farmacologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/metabolismo , Sítios de Ligação , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
11.
J Bacteriol ; 197(6): 1075-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583975

RESUMO

In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Imidazóis/farmacologia , Lipoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Antibacterianos/química , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Bactérias Gram-Negativas/genética , Imidazóis/química , Estrutura Molecular , Mutação , Fenótipo
12.
J Bacteriol ; 197(10): 1726-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733621

RESUMO

UNLABELLED: A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. Resistance to the sulfonyl piperazine maps to LpxH, which catalyzes the fourth step in the synthesis of lipid A, the outer membrane anchor of lipopolysaccharide (LPS). To our knowledge, this compound is the first reported inhibitor of LpxH. Resistance to the pyrazole compound mapped to mutations in either LolC or LolE, components of the essential LolCDE transporter complex, which is required for trafficking of lipoproteins to the outer membrane. Biochemical experiments with E. coli spheroplasts showed that the pyrazole compound is capable of inhibiting the release of lipoproteins from the inner membrane. Both of these compounds have significant promise as chemical probes to further interrogate the potential of these novel cell wall components for antimicrobial therapy. IMPORTANCE: The prevalence of antibacterial resistance, particularly among Gram-negative organisms, signals a need for novel antibacterial agents. A phenotypic screen using AmpC as a sensor for compounds that inhibit processes involved in Gram-negative envelope biogenesis led to the identification of two novel inhibitors with unique mechanisms of action targeting Escherichia coli outer membrane biogenesis. One compound inhibits the transport system for lipoprotein transport to the outer membrane, while the other compound inhibits synthesis of lipopolysaccharide. These results indicate that it is still possible to uncover new compounds with intrinsic antibacterial activity that inhibit novel targets related to the cell envelope, suggesting that the Gram-negative cell envelope still has untapped potential for therapeutic intervention.


Assuntos
Antibacterianos/isolamento & purificação , Parede Celular/efeitos dos fármacos , Citrobacter freundii/enzimologia , Escherichia coli/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Piperazinas/isolamento & purificação , Pirazóis/isolamento & purificação , Antibacterianos/farmacologia , Parede Celular/genética , Citrobacter freundii/genética , Farmacorresistência Bacteriana , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Expressão Gênica , Genes Reporter , Piperazinas/farmacologia , Pirazóis/farmacologia
13.
J Biol Chem ; 289(31): 21651-62, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24936059

RESUMO

The antimicrobial activity of phenyl-thiazolylurea-sulfonamides against Staphylococcus aureus PheRS are dependent upon phenylalanine levels in the extracellular fluids. Inhibitor efficacy in animal models of infection is substantially diminished by dietary phenylalanine intake, thereby reducing the perceived clinical utility of this inhibitor class. The search for novel antibacterial compounds against Gram-negative pathogens led to a re-evaluation of this phenomenon, which is shown here to be unique to S. aureus. Inhibition of macromolecular syntheses and characterization of novel resistance mutations in Escherichia coli demonstrate that antimicrobial activity of phenyl-thiazolylurea-sulfonamides is mediated by PheRS inhibition, validating this enzyme as a viable drug discovery target for Gram-negative pathogens. A search for novel inhibitors of PheRS yielded three novel chemical starting points. NMR studies were used to confirm direct target engagement for phenylalanine-competitive hits. The crystallographic structure of Pseudomonas aeruginosa PheRS defined the binding modes of these hits and revealed an auxiliary hydrophobic pocket that is positioned adjacent to the phenylalanine binding site. Three viable inhibitor-resistant mutants were mapped to this pocket, suggesting that this region is a potential liability for drug discovery.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/enzimologia , Fenilalanina-tRNA Ligase/metabolismo , Sítios de Ligação , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fenilalanina-tRNA Ligase/química , Sulfonamidas/farmacologia
14.
Angew Chem Int Ed Engl ; 54(16): 4764-7, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25693499

RESUMO

An NMR-based approach marries the two traditional screening technologies (phenotypic and target-based screening) to find compounds inhibiting a specific enzymatic reaction in bacterial cells. Building on a previous study in which it was demonstrated that hydrolytic decomposition of meropenem in living Escherichia coli cells carrying New Delhi metallo-ß-lactamase subclass 1 (NDM-1) can be monitored in real time by NMR spectroscopy, we designed a cell-based NMR screening platform. A strong NDM-1 inhibitor was identified with cellular IC50 of 0.51 µM, which is over 300-fold more potent than captopril, a known NDM-1 inhibitor. This new screening approach has great potential to be applied to targets in other cell types, such as mammalian cells, and to targets that are only stable or functionally competent in the cellular environment.


Assuntos
Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Espectroscopia de Prótons por Ressonância Magnética , beta-Lactamases/química , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Meropeném , Ligação Proteica , Tienamicinas/química , Tienamicinas/metabolismo , beta-Lactamases/metabolismo
15.
Protein Expr Purif ; 104: 57-64, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25240855

RESUMO

In Gram-negative bacteria, the cell wall is surrounded by an outer membrane, the outer leaflet of which is comprised of charged lipopolysaccharide (LPS) molecules. Lipid A, a component of LPS, anchors this molecule to the outer membrane. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a zinc-dependent metalloamidase that catalyzes the first committed step of biosynthesis of Lipid A, making it a promising target for antibiotic therapy. Formation of soluble aggregates of Pseudomonas aeruginosa LpxC protein when overexpressed in Escherichia coli has limited the availability of high quality protein for X-ray crystallography. Expression of LpxC in the presence of an inhibitor dramatically increased protein solubility, shortened crystallization time and led to a high-resolution crystal structure of LpxC bound to the inhibitor. However, this approach required large amounts of compound, restricting its use. To reduce the amount of compound needed, an overexpression strain of E. coli was created lacking acrB, a critical component of the major efflux pump. By overexpressing LpxC in the efflux deficient strain in the presence of LpxC inhibitors, several structures of P. aeruginosa LpxC in complex with different compounds were solved to accelerate structure-based drug design.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Pseudomonas aeruginosa/enzimologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Catálise , Cromatografia Líquida , Cristalografia por Raios X , Escherichia coli , Expressão Gênica , Espectrometria de Massas , Conformação Proteica , Zinco/química , Zinco/metabolismo
16.
Diagn Microbiol Infect Dis ; 109(3): 116344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735147

RESUMO

Combinations of the ß-lactam/ß-lactamase inhibitor sulbactam-durlobactam and seventeen antimicrobial agents were tested against strains of Acinetobacter baumannii in checkerboard assays. Most combinations resulted in indifference with no instances of antagonism. These results suggest sulbactam-durlobactam antibacterial activity against A. baumannii is unlikely to be affected if co-dosed with other antimicrobial agents.


Assuntos
Acinetobacter baumannii , Antibacterianos , Compostos Azabicíclicos , Testes de Sensibilidade Microbiana , Sulbactam , Sulbactam/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Humanos , Acinetobacter calcoaceticus/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Combinação de Medicamentos
17.
Future Microbiol ; 19(7): 563-576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426849

RESUMO

Sulbactam-durlobactam is a pathogen-targeted ß-lactam/ß-lactamase inhibitor combination that has been approved by the US FDA for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible isolates of Acinetobacter baumannii-calcoaceticus complex (ABC) in patients 18 years of age and older. Sulbactam is a penicillin derivative with antibacterial activity against Acinetobacter but is prone to hydrolysis by ß-lactamases encoded by contemporary isolates. Durlobactam is a diazabicyclooctane ß-lactamase inhibitor with activity against Ambler classes A, C and D serine ß-lactamases that restores sulbactam activity both in vitro and in vivo against multidrug-resistant ABC. Sulbactam-durlobactam is a promising alternative therapy for the treatment of serious Acinetobacter infections, which can have high rates of mortality.


Sulbactam­durlobactam: a drug for treating lung infectionsAcinetobacter is a type of bacteria. One type, called CRAB, causes serious infections and can be fatal. CRAB is very hard to treat because most drugs no longer work. Sulbactam­durlobactam (SUL-DUR) is a drug that can kill CRAB. The US FDA approved SUL-DUR in May of 2023 for treating lung infections (pneumonia) caused by CRAB. This article explains how SUL-DUR works. Use of SUL-DUR and other drugs to treat these types of infections are discussed. In conclusion, SUL-DUR is a promising therapy for serious infections caused by CRAB.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Compostos Azabicíclicos , Sulbactam , Inibidores de beta-Lactamases , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Sulbactam/farmacologia , Humanos , Inibidores de beta-Lactamases/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , beta-Lactamases/metabolismo , beta-Lactamases/genética , beta-Lactamas/farmacologia , Testes de Sensibilidade Microbiana , Combinação de Medicamentos , Animais
18.
Open Forum Infect Dis ; 11(4): ofae140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595956

RESUMO

Background: In a previous study, the efficacy and safety of sulbactam-durlobactam vs colistin for the treatment of patients with carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRABC) infections were evaluated in a randomized controlled phase 3 trial. Both arms were dosed on a background of imipenem-cilastatin to treat coinfecting gram-negative pathogens. Thirty-six percent of infections in the primary efficacy population were polymicrobial. Methods: A subset analysis was performed to compare clinical and microbiological outcomes at test of cure (7 ± 2 days after the last dose) for patients with monomicrobial and polymicrobial CRABC infections. Minimal inhibitory concentrations of antibiotics against baseline isolates were determined by broth microdilution according to Clinical and Laboratory Standards Institute methodology. Results: Clinical cure, 28-day all-cause mortality, and microbiological outcomes were similar for patients in the sulbactam-durlobactam treatment arm with monomicrobial or polymicrobial A baumannii-calcoaceticus infections. Patients in the colistin arm with monomicrobial CRABC infections had higher mortality rates with worse clinical and microbiological outcomes as compared with those with polymicrobial infections. For patients who received sulbactam-durlobactam, imipenem susceptibility of coinfecting gram-negative pathogens trended with clinical benefit for patients with polymicrobial A baumannii-calcoaceticus infections. When tested in vitro, durlobactam restored imipenem susceptibility to the majority of coinfecting gram-negative pathogens from the sulbactam-durlobactam arm. This phenotype appeared to be related to the clinical outcome in 13 of 15 evaluable cases. Conclusions: These results suggest that the use of sulbactam-durlobactam plus a carbapenem could be an effective approach to treat polymicrobial infections that include CRABC, but additional clinical data are needed to demonstrate efficacy.

19.
Front Microbiol ; 12: 709974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349751

RESUMO

Durlobactam is a new member of the diazabicyclooctane class of ß-lactamase inhibitors with broad spectrum activity against Ambler class A, C, and D serine ß-lactamases. Sulbactam is a first generation ß-lactamase inhibitor with activity limited to a subset of class A enzymes that also has direct-acting antibacterial activity against Acinetobacter spp. The latter feature is due to sulbactam's ability to inhibit certain penicillin-binding proteins, essential enzymes involved in bacterial cell wall synthesis in this pathogen. Because sulbactam is also susceptible to cleavage by numerous ß-lactamases, its clinical utility for the treatment of contemporary Acinetobacter infections is quite limited. However, when combined with durlobactam, the activity of sulbactam is effectively restored against these notoriously multidrug-resistant strains. This sulbactam-durlobactam combination is currently in late-stage development for the treatment of Acinectobacter infections, including those caused by carbapenem-resistant isolates, for which there is a high unmet medical need. The following mini-review summarizes the molecular drivers of efficacy of this combination against this troublesome pathogen, with an emphasis on the biochemical features of each partner.

20.
ACS Infect Dis ; 6(6): 1389-1397, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32255609

RESUMO

Multi-drug-resistant Enterobacteriales expressing a wide array of ß-lactamases are emerging as a global health threat in both hospitals and communities. Although several intravenous drugs have recently been approved to address this need, there are no oral Gram-negative agents that are both safe and broadly effective against such pathogens. The lack of an effective oral agent is of concern for common infections which could otherwise be treated in the community but, due to antibiotic resistance, require hospitalization to allow for intravenous therapy. ETX1317 is a novel, broad spectrum, serine ß-lactamase inhibitor of the diazabicyclooctane class that restores the antibacterial activity of multiple ß-lactams against multiple species of multi-drug-resistant Enterobacteriales, including carbapenem-resistant strains. A combination of its oral prodrug, ETX0282, and the oral prodrug of a third-generation cephalosporin, cefpodoxime proxetil, is currently in clinical development. This report describes the biochemical and microbiological properties of ETX1317, which is more potent and demonstrates a greater breadth of inhibition than avibactam, the parenteral prototype of this class of ß-lactamase inhibitors.


Assuntos
Preparações Farmacêuticas , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa