Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 577(7791): 572-575, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942067

RESUMO

The CRISPR system in bacteria and archaea provides adaptive immunity against mobile genetic elements. Type III CRISPR systems detect viral RNA, resulting in the activation of two regions of the Cas10 protein: an HD nuclease domain (which degrades viral DNA)1,2 and a cyclase domain (which synthesizes cyclic oligoadenylates from ATP)3-5. Cyclic oligoadenylates in turn activate defence enzymes with a CRISPR-associated Rossmann fold domain6, sculpting a powerful antiviral response7-10 that can drive viruses to extinction7,8. Cyclic nucleotides are increasingly implicated in host-pathogen interactions11-13. Here we identify a new family of viral anti-CRISPR (Acr) enzymes that rapidly degrade cyclic tetra-adenylate (cA4). The viral ring nuclease AcrIII-1 is widely distributed in archaeal and bacterial viruses and in proviruses. The enzyme uses a previously unknown fold to bind cA4 specifically, and a conserved active site to rapidly cleave this signalling molecule, allowing viruses to neutralize the type III CRISPR defence system. The AcrIII-1 family has a broad host range, as it targets cA4 signalling molecules rather than specific CRISPR effector proteins. Our findings highlight the crucial role of cyclic nucleotide signalling in the conflict between viruses and their hosts.


Assuntos
Sistemas CRISPR-Cas/imunologia , Endonucleases/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Sulfolobus/virologia , Proteínas Virais/metabolismo , Vírus/enzimologia , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , DNA Viral/metabolismo , Endonucleases/química , Modelos Moleculares , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Filogenia , Transdução de Sinais , Sulfolobus/genética , Sulfolobus/imunologia , Sulfolobus/metabolismo , Proteínas Virais/química , Proteínas Virais/classificação , Vírus/imunologia
2.
Nucleic Acids Res ; 51(19): 10590-10605, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37747760

RESUMO

Type III CRISPR systems synthesize cyclic oligoadenylate (cOA) second messengers as part of a multi-faceted immune response against invading mobile genetic elements (MGEs). cOA activates non-specific CRISPR ancillary defence nucleases to create a hostile environment for MGE replication. Csm6 ribonucleases bind cOA using a CARF (CRISPR-associated Rossmann Fold) domain, resulting in activation of a fused HEPN (Higher Eukaryotes and Prokaryotes Nucleotide binding) ribonuclease domain. Csm6 enzymes are widely used in a new generation of diagnostic assays for the detection of specific nucleic acid species. However, the activation mechanism is not fully understood. Here we characterised the cyclic hexa-adenylate (cA6) activated Csm6' ribonuclease from the industrially important bacterium Streptococcus thermophilus. Crystal structures of Csm6' in the inactive and cA6 bound active states illuminate the conformational changes which trigger mRNA destruction. Upon binding of cA6, there is a close to 60° rotation between the CARF and HEPN domains, which causes the 'jaws' of the HEPN domain to open and reposition active site residues. Key to this transition is the 6H domain, a right-handed solenoid domain connecting the CARF and HEPN domains, which transmits the conformational changes for activation.


Assuntos
Ribonucleases , Streptococcus thermophilus , Domínio Catalítico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas , Nucleotídeos Cíclicos , Ribonucleases/química , Ribonucleases/metabolismo , Sistemas do Segundo Mensageiro , Streptococcus thermophilus/química
3.
Cell ; 133(5): 801-12, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510925

RESUMO

The XPD helicase (Rad3 in Saccharomyces cerevisiae) is a component of transcription factor IIH (TFIIH), which functions in transcription initiation and Nucleotide Excision Repair in eukaryotes, catalyzing DNA duplex opening localized to the transcription start site or site of DNA damage, respectively. XPD has a 5' to 3' polarity and the helicase activity is dependent on an iron-sulfur cluster binding domain, a feature that is conserved in related helicases such as FancJ. The xpd gene is the target of mutation in patients with xeroderma pigmentosum, trichothiodystrophy, and Cockayne's syndrome, characterized by a wide spectrum of symptoms ranging from cancer susceptibility to neurological and developmental defects. The 2.25 A crystal structure of XPD from the crenarchaeon Sulfolobus tokodaii, presented here together with detailed biochemical analyses, allows a molecular understanding of the structural basis for helicase activity and explains the phenotypes of xpd mutations in humans.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/genética , Sulfolobus/enzimologia , Proteína Grupo D do Xeroderma Pigmentoso/química , Proteína Grupo D do Xeroderma Pigmentoso/genética , Substituição de Aminoácidos , Proteínas Arqueais/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Cristalografia por Raios X , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
4.
Nucleic Acids Res ; 49(5): 2777-2789, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33590098

RESUMO

Cells and organisms have a wide range of mechanisms to defend against infection by viruses and other mobile genetic elements (MGE). Type III CRISPR systems detect foreign RNA and typically generate cyclic oligoadenylate (cOA) second messengers that bind to ancillary proteins with CARF (CRISPR associated Rossman fold) domains. This results in the activation of fused effector domains for antiviral defence. The best characterised CARF family effectors are the Csm6/Csx1 ribonucleases and DNA nickase Can1. Here we investigate a widely distributed CARF family effector with a nuclease domain, which we name Can2 (CRISPR ancillary nuclease 2). Can2 is activated by cyclic tetra-adenylate (cA4) and displays both DNase and RNase activity, providing effective immunity against plasmid transformation and bacteriophage infection in Escherichia coli. The structure of Can2 in complex with cA4 suggests a mechanism for the cA4-mediated activation of the enzyme, whereby an active site cleft is exposed on binding the activator. These findings extend our understanding of type III CRISPR cOA signalling and effector function.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Desoxirribonuclease I/química , Ribonucleases/química , Clostridiales/enzimologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/química , Desoxirribonuclease I/metabolismo , Ativação Enzimática , Escherichia coli/virologia , Sequências Repetitivas Dispersas , Metais/química , Modelos Moleculares , Domínios Proteicos , Ribonucleases/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(21): E4870-E4879, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735649

RESUMO

Capsules are surface layers of hydrated capsular polysaccharides (CPSs) produced by many bacteria. The human pathogen Salmonella enterica serovar Typhi produces "Vi antigen" CPS, which contributes to virulence. In a conserved strategy used by bacteria with diverse CPS structures, translocation of Vi antigen to the cell surface is driven by an ATP-binding cassette (ABC) transporter. These transporters are engaged in heterooligomeric complexes proposed to form an enclosed translocation conduit to the cell surface, allowing the transporter to power the entire process. We identified Vi antigen biosynthesis genetic loci in genera of the Burkholderiales, which are paradoxically distinguished from S. Typhi by encoding VexL, a predicted pectate lyase homolog. Biochemical analyses demonstrated that VexL is an unusual metal-independent endolyase with an acidic pH optimum that is specific for O-acetylated Vi antigen. A 1.22-Å crystal structure of the VexL-Vi antigen complex revealed features which distinguish common secreted catabolic pectate lyases from periplasmic VexL, which participates in cell-surface assembly. VexL possesses a right-handed parallel ß-superhelix, of which one face forms an electropositive glycan-binding groove with an extensive hydrogen bonding network that includes Vi antigen acetyl groups and confers substrate specificity. VexL provided a probe to interrogate conserved features of the ABC transporter-dependent export model. When introduced into S Typhi, VexL localized to the periplasm and degraded Vi antigen. In contrast, a cytosolic derivative had no effect unless export was disrupted. These data provide evidence that CPS assembled in ABC transporter-dependent systems is actually exposed to the periplasm during envelope translocation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Burkholderia/enzimologia , Liases/metabolismo , Periplasma/enzimologia , Polissacarídeos Bacterianos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Transporte Biológico , Liases/química , Filogenia , Conformação Proteica
6.
Chemistry ; 24(71): 19081-19088, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30307091

RESUMO

Cyclophellitol aziridines are potent irreversible inhibitors of retaining glycosidases and versatile intermediates in the synthesis of activity-based glycosidase probes (ABPs). Direct 3-amino-2-(trifluoromethyl)quinazolin-4(3H)-one-mediated aziridination of l-ido-configured cyclohexene has enabled the synthesis of new covalent inhibitors and ABPs of α-l-iduronidase, deficiency of which underlies the lysosomal storage disorder mucopolysaccharidosis type I (MPS I). The iduronidase ABPs react covalently and irreversibly in an activity-based manner with human recombinant α-l-iduronidase (rIDUA, Aldurazyme® ). The structures of IDUA when complexed with the inhibitors in a non-covalent transition state mimicking form and a covalent enzyme-bound form provide insights into its conformational itinerary. Inhibitors 1-3 adopt a half-chair conformation in solution (4 H3 and 3 H4 ), as predicted by DFT calculations, which is different from the conformation of the Michaelis complex observed by crystallographic studies. Consequently, 1-3 may need to overcome an energy barrier in order to switch from the 4 H3 conformation to the transition state (2, 5 B) binding conformation before reacting and adopting a covalent 5 S1 conformation. rIDUA can be labeled with fluorescent Cy5 ABP 2, which allows monitoring of the delivery of therapeutic recombinant enzyme to lysosomes, as is intended in enzyme replacement therapy for the treatment of MPS I patients.


Assuntos
Aziridinas/química , Cicloexanóis/química , Inibidores Enzimáticos/química , Iduronidase/antagonistas & inibidores , Iduronidase/análise , Cromatografia Líquida , Ensaios Enzimáticos , Corantes Fluorescentes/química , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Proteínas Recombinantes/análise , Coloração e Rotulagem , Espectrometria de Massas em Tandem
7.
Blood ; 123(12): 1948-55, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24501222

RESUMO

Histidine-rich glycoprotein (HRG) is a plasma protein consisting of 6 distinct functional domains and is an important regulator of key cardiovascular processes, including angiogenesis and coagulation. The protein is composed of 2 N-terminal domains (N1 and N2), 2 proline-rich regions (PRR1 and PRR2) that flank a histidine-rich region (HRR), and a C-terminal domain. To date, structural information of HRG has largely come from sequence analysis and spectroscopic studies. It is thought that an HRG fragment containing the HRR, released via plasmin-mediated cleavage, acts as a negative regulator of angiogenesis in vivo. However, its release also requires cleavage of a disulphide bond suggesting that its activity is mediated by a redox process. Here, we present a 1.93 Å resolution crystal structure of the N2 domain of serum-purified rabbit HRG. The structure confirms that the N2 domain, which along with the N1 domain, forms an important molecular interaction site on HRG, possesses a cystatin-like fold composed of a 5-stranded antiparallel ß-sheet wrapped around a 5-turn α-helix. A native N-linked glycosylation site was identified at Asn184. Moreover, the structure reveals the presence of an S-glutathionyl adduct at Cys185, which has implications for the redox-mediated release of the antiangiogenic cleavage product from HRG.


Assuntos
Neovascularização Fisiológica , Proteínas/química , Proteínas/fisiologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dissulfetos/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Coelhos , Homologia de Sequência de Aminoácidos
8.
Bioorg Chem ; 64: 37-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26642178

RESUMO

The investigation of a difluoromethyl-bearing nucleoside with the fluorinase enzyme is described. 5',5'-Difluoro-5'-deoxyadenosine 7 (F2DA) was synthesised from adenosine, and found to bind to the fluorinase enzyme by isothermal titration calorimetry with similar affinity compared to 5'-fluoro-5'-deoxyadenosine 2 (FDA), the natural product of the enzymatic reaction. F2DA7 was found, however, not to undergo the enzyme catalysed reaction with L-selenomethionine, unlike FDA 2, which undergoes reaction with L-selenomethionine to generate Se-adenosylselenomethionine. A co-crystal structure of the fluorinase and F2DA7 and tartrate was solved to 1.8Å, and revealed that the difluoromethyl group bridges interactions known to be essential for activation of the single fluorine in FDA 2. An unusual hydrogen bonding interaction between the hydrogen of the difluoromethyl group and one of the hydroxyl oxygens of the tartrate ligand was also observed. The bridging interactions, coupled with the inherently stronger C-F bond in the difluoromethyl group, offers an explanation for why no reaction is observed.


Assuntos
Adenosina/análogos & derivados , Proteínas de Bactérias/química , Oxirredutases/química , Adenosina/síntese química , Adenosina/química , Calorimetria , Cristalografia por Raios X , Metionina/química , Selenometionina/química
9.
Proc Natl Acad Sci U S A ; 109(7): E398-405, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22106294

RESUMO

ssDNA-binding proteins (SSBs) based on the oligonucleotide-binding fold are considered ubiquitous in nature and play a central role in many DNA transactions including replication, recombination, and repair. We demonstrate that the Thermoproteales, a clade of hyperthermophilic Crenarchaea, lack a canonical SSB. Instead, they encode a distinct ssDNA-binding protein that we term "ThermoDBP," exemplified by the protein Ttx1576 from Thermoproteus tenax. ThermoDBP binds specifically to ssDNA with low sequence specificity. The crystal structure of Ttx1576 reveals a unique fold and a mechanism for ssDNA binding, consisting of an extended cleft lined with hydrophobic phenylalanine residues and flanked by basic amino acids. Two ssDNA-binding domains are linked by a coiled-coil leucine zipper. ThermoDBP appears to have displaced the canonical SSB during the diversification of the Thermoproteales, a highly unusual example of the loss of a "ubiquitous" protein during evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Thermoproteales/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ligação Proteica , Dobramento de Proteína
10.
J Am Chem Soc ; 135(38): 14276-85, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23957439

RESUMO

Sphingolipids (SLs) are essential components of cellular membranes formed from the condensation of L-serine and a long-chain acyl thioester. This first step is catalyzed by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) which is a promising therapeutic target. The fungal natural product myriocin is a potent inhibitor of SPT and is widely used to block SL biosynthesis despite a lack of a detailed understanding of its molecular mechanism. By combining spectroscopy, mass spectrometry, X-ray crystallography, and kinetics, we have characterized the molecular details of SPT inhibition by myriocin. Myriocin initially forms an external aldimine with PLP at the active site, and a structure of the resulting co-complex explains its nanomolar affinity for the enzyme. This co-complex then catalytically degrades via an unexpected 'retro-aldol-like' cleavage mechanism to a C18 aldehyde which in turn acts as a suicide inhibitor of SPT by covalent modification of the essential catalytic lysine. This surprising dual mechanism of inhibition rationalizes the extraordinary potency and longevity of myriocin inhibition.


Assuntos
Ácidos Graxos Monoinsaturados/química , Serina C-Palmitoiltransferase/antagonistas & inibidores , Cristalografia por Raios X , Cinética , Mutação , Proteínas Recombinantes/química , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Sphingomonas/enzimologia , Sphingomonas/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-23295481

RESUMO

Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.


Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Descoberta de Drogas , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
12.
Nat Chem Biol ; 5(3): 174-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19182782

RESUMO

Bacterial pathogens need to scavenge iron from their host for growth and proliferation during infection. They have evolved several strategies to do this, one being the biosynthesis and excretion of small, high-affinity iron chelators known as siderophores. The biosynthesis of siderophores is an important area of study, not only for potential therapeutic intervention but also to illuminate new enzyme chemistries. Two general pathways for siderophore biosynthesis exist: the well-characterized nonribosomal peptide synthetase (NRPS)-dependent pathway and the NRPS-independent siderophore (NIS) pathway, which relies on a different family of sparsely investigated synthetases. Here we report structural and biochemical studies of AcsD from Pectobacterium (formerly Erwinia) chrysanthemi, an NIS synthetase involved in achromobactin biosynthesis. The structures of ATP and citrate complexes provide a mechanistic rationale for stereospecific formation of an enzyme-bound (3R)-citryladenylate, which reacts with L-serine to form a likely achromobactin precursor. AcsD is a unique acyladenylate-forming enzyme with a new fold and chemical catalysis strategy.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Cítrico/metabolismo , Dickeya chrysanthemi/metabolismo , Sideróforos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Biocatálise , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/química , Primers do DNA , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
13.
Nucleic Acids Res ; 37(15): 4887-97, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19506028

RESUMO

The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha-beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems.


Assuntos
Proteínas de Bactérias/química , Enzimas de Restrição-Modificação do DNA/antagonistas & inibidores , Mimetismo Molecular , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/química , Desoxirribonucleases de Sítio Específico do Tipo I/antagonistas & inibidores , Dimerização , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química
14.
ACS Chem Biol ; 16(11): 2632-2640, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34724608

RESUMO

Sialidases catalyze the release of sialic acid from the terminus of glycan chains. We previously characterized the sialidase from the opportunistic fungal pathogen, Aspergillus fumigatus, and showed that it is a Kdnase. That is, this enzyme prefers 3-deoxy-d-glycero-d-galacto-non-2-ulosonates (Kdn glycosides) as the substrate compared to N-acetylneuraminides (Neu5Ac). Here, we report characterization and crystal structures of putative sialidases from two other ascomycete fungal pathogens, Aspergillus terreus (AtS) and Trichophyton rubrum (TrS). Unlike A. fumigatus Kdnase (AfS), hydrolysis with the Neu5Ac substrates was negligible for TrS and AtS; thus, TrS and AtS are selective Kdnases. The second-order rate constant for hydrolysis of aryl Kdn glycosides by AtS is similar to that by AfS but 30-fold higher by TrS. The structures of these glycoside hydrolase family 33 (GH33) enzymes in complex with a range of ligands for both AtS and TrS show subtle changes in ring conformation that mimic the Michaelis complex, transition state, and covalent intermediate formed during catalysis. In addition, they can aid identification of important residues for distinguishing between Kdn and Neu5Ac substrates. When A. fumigatus, A. terreus, and T. rubrum were grown in chemically defined media, Kdn was detected in mycelial extracts, but Neu5Ac was only observed in A. terreus or T. rubrum extracts. The C8 monosaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) was also identified in A. fumigatus and T. rubrum samples. A fluorescent Kdn probe was synthesized and revealed the localization of AfS in vesicles at the cell surface.


Assuntos
Ascomicetos/enzimologia , Neuraminidase/metabolismo , Ascomicetos/crescimento & desenvolvimento , Catálise , Domínio Catalítico , Meios de Cultura , Estabilidade Enzimática , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Cinética , Neuraminidase/química , Conformação Proteica , Especificidade por Substrato , Temperatura
15.
J Struct Funct Genomics ; 11(2): 167-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20419351

RESUMO

The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.


Assuntos
Laboratórios/organização & administração , Proteínas/química , Proteínas/metabolismo , Proteômica/organização & administração , Biologia Computacional , Cristalização , Humanos , Proteínas/genética , Escócia
16.
Nat Struct Mol Biol ; 12(10): 886-92, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16170324

RESUMO

Only few instances are known of protein folds that tolerate massive sequence variation for the sake of binding diversity. The most extensively characterized is the immunoglobulin fold. We now add to this the C-type lectin (CLec) fold, as found in the major tropism determinant (Mtd), a retroelement-encoded receptor-binding protein of Bordetella bacteriophage. Variation in Mtd, with its approximately 10(13) possible sequences, enables phage adaptation to Bordetella spp. Mtd is an intertwined, pyramid-shaped trimer, with variable residues organized by its CLec fold into discrete receptor-binding sites. The CLec fold provides a highly static scaffold for combinatorial display of variable residues, probably reflecting a different evolutionary solution for balancing diversity against stability from that in the immunoglobulin fold. Mtd variants are biased toward the receptor pertactin, and there is evidence that the CLec fold is used broadly for sequence variation by related retroelements.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Bacteriófagos/metabolismo , Bordetella/virologia , Lectinas Tipo C/química , Proteínas Virais/química , Proteínas Virais/genética , Fatores de Virulência de Bordetella/química , Sequência de Aminoácidos , Evolução Molecular , Variação Genética , Genoma Viral , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína
17.
Nucleic Acids Res ; 36(Web Server issue): W190-6, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18385152

RESUMO

TarO (http://www.compbio.dundee.ac.uk/taro) offers a single point of reference for key bioinformatics analyses relevant to selecting proteins or domains for study by structural biology techniques. The protein sequence is analysed by 17 algorithms and compared to 8 databases. TarO gathers putative homologues, including orthologues, and then obtains predictions of properties for these sequences including crystallisation propensity, protein disorder and post-translational modifications. Analyses are run on a high-performance computing cluster, the results integrated, stored in a database and accessed through a web-based user interface. Output is in tabulated format and in the form of an annotated multiple sequence alignment (MSA) that may be edited interactively in the program Jalview. TarO also simplifies the gathering of additional annotations via the Distributed Annotation System, both from the MSA in Jalview and through links to Dasty2. Routes to other information gateways are included, for example to relevant pages from UniProt, COG and the Conserved Domains Database. Open access to TarO is available from a guest account with private accounts for academic use available on request. Future development of TarO will include further analysis steps and integration with the Protein Information Management System (PIMS), a sister project in the BBSRC 'Structural Proteomics of Rational Targets' initiative.


Assuntos
Proteínas/química , Análise de Sequência de Proteína , Software , Algoritmos , Bases de Dados de Proteínas , Internet , Estrutura Terciária de Proteína , Proteínas/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Interface Usuário-Computador
18.
Nat Commun ; 11(1): 500, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980625

RESUMO

The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes. On binding invading RNA species, Type III CRISPR systems generate cyclic oligoadenylate (cOA) signalling molecules, potentiating a powerful immune response by activating downstream effector proteins, leading to viral clearance, cell dormancy or death. Here we describe the structure and mechanism of a cOA-activated CRISPR defence DNA endonuclease, CRISPR ancillary nuclease 1 (Can1). Can1 has a unique monomeric structure with two CRISPR associated Rossman fold (CARF) domains and two DNA nuclease-like domains. The crystal structure of the enzyme has been captured in the activated state, with a cyclic tetra-adenylate (cA4) molecule bound at the core of the protein. cA4 binding reorganises the structure to license a metal-dependent DNA nuclease activity specific for nicking of supercoiled DNA. DNA nicking by Can1 is predicted to slow down viral replication kinetics by leading to the collapse of DNA replication forks.


Assuntos
Nucleotídeos de Adenina/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/química , Endonucleases/metabolismo , Oligorribonucleotídeos/farmacologia , Sítios de Ligação , DNA/metabolismo , Modelos Moleculares , Plasmídeos/genética , Domínios Proteicos , Homologia Estrutural de Proteína , Thermus thermophilus/genética
19.
ACS Catal ; 10(24): 15019-15032, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33391858

RESUMO

The enzyme (R)-3-hydroxybutyrate dehydrogenase (HBDH) catalyzes the enantioselective reduction of 3-oxocarboxylates to (R)-3-hydroxycarboxylates, the monomeric precursors of biodegradable polyesters. Despite its application in asymmetric reduction, which prompted several engineering attempts of this enzyme, the order of chemical events in the active site, their contributions to limit the reaction rate, and interactions between the enzyme and non-native 3-oxocarboxylates have not been explored. Here, a combination of kinetic isotope effects, protein crystallography, and quantum mechanics/molecular mechanics (QM/MM) calculations were employed to dissect the HBDH mechanism. Initial velocity patterns and primary deuterium kinetic isotope effects establish a steady-state ordered kinetic mechanism for acetoacetate reduction by a psychrophilic and a mesophilic HBDH, where hydride transfer is not rate limiting. Primary deuterium kinetic isotope effects on the reduction of 3-oxovalerate indicate that hydride transfer becomes more rate limiting with this non-native substrate. Solvent and multiple deuterium kinetic isotope effects suggest hydride and proton transfers occur in the same transition state. Crystal structures were solved for both enzymes complexed to NAD+:acetoacetate and NAD+:3-oxovalerate, illustrating the structural basis for the stereochemistry of the 3-hydroxycarboxylate products. QM/MM calculations using the crystal structures as a starting point predicted a higher activation energy for 3-oxovalerate reduction catalyzed by the mesophilic HBDH, in agreement with the higher reaction rate observed experimentally for the psychrophilic orthologue. Both transition states show concerted, albeit not synchronous, proton and hydride transfers to 3-oxovalerate. Setting the MM partial charges to zero results in identical reaction activation energies with both orthologues, suggesting the difference in activation energy between the reactions catalyzed by cold- and warm-adapted HBDHs arises from differential electrostatic stabilization of the transition state. Mutagenesis and phylogenetic analysis reveal the catalytic importance of His150 and Asn145 in the respective orthologues.

20.
J Mol Biol ; 370(5): 870-86, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17559874

RESUMO

Sphingolipid biosynthesis commences with the condensation of L-serine and palmitoyl-CoA to produce 3-ketodihydrosphingosine (KDS). This reaction is catalysed by the PLP-dependent enzyme serine palmitoyltransferase (SPT; EC 2.3.1.50), which is a membrane-bound heterodimer (SPT1/SPT2) in eukaryotes such as humans and yeast and a cytoplasmic homodimer in the Gram-negative bacterium Sphingomonas paucimobilis. Unusually, the outer membrane of S. paucimobilis contains glycosphingolipid (GSL) instead of lipopolysaccharide (LPS), and SPT catalyses the first step of the GSL biosynthetic pathway in this organism. We report here the crystal structure of the holo-form of S. paucimobilis SPT at 1.3 A resolution. The enzyme is a symmetrical homodimer with two active sites and a monomeric tertiary structure consisting of three domains. The PLP cofactor is bound covalently to a lysine residue (Lys265) as an internal aldimine/Schiff base and the active site is composed of residues from both subunits, located at the bottom of a deep cleft. Models of the human SPT1/SPT2 heterodimer were generated from the bacterial structure by bioinformatics analysis. Mutations in the human SPT1-encoding subunit have been shown to cause a neuropathological disease known as hereditary sensory and autonomic neuropathy type I (HSAN1). Our models provide an understanding of how these mutations may affect the activity of the enzyme.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Serina C-Palmitoiltransferase/química , Esfingolipídeos/biossíntese , Sphingomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Biologia Computacional , Dimerização , Holoenzimas/química , Humanos , Dados de Sequência Molecular , Mutação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa