Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 500, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208332

RESUMO

BACKGROUND: The wide variety of specialized permissive and repressive mechanisms by which germ cells regulate developmental gene expression are not well understood genome-wide. Isolation of germ cells with high integrity and purity from living animals is necessary to address these open questions, but no straightforward methods are currently available. RESULTS: Here we present an experimental paradigm that permits the isolation of nuclei from C. elegans germ cells at quantities sufficient for genomic analyses. We demonstrate that these nuclei represent a very pure population and are suitable for both transcriptome analysis (RNA-seq) and chromatin immunoprecipitation (ChIP-seq) of histone modifications. From these data, we find unexpected germline- and soma-specific patterns of gene regulation. CONCLUSIONS: This new capacity removes a major barrier in the field to dissect gene expression mechanisms in the germ line of C. elegans. Consequent discoveries using this technology will be relevant to conserved regulatory mechanisms across species.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Núcleo Celular/genética , Perfilação da Expressão Gênica , Genômica , Células Germinativas/citologia , Código das Histonas , Animais , Cromatina/genética
2.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34519784

RESUMO

To ensure stable transmission of genetic information to the next generation, germ cells frequently silence sex chromosomes, as well as autosomal loci that promote inappropriate differentiation programs. In Caenorhabditis elegans, silenced and active genomic domains are established in germ cells by the histone modification complexes MES-2/3/6 and MES-4, which promote silent and active chromatin states, respectively. These states are generally mutually exclusive and modulation of one state influences the pattern of the other. Here, we identify the zinc-finger protein OEF-1 as a novel modifier of this epigenetic balance in the C. elegans germline. Loss of oef-1 genetically enhances mes mutant phenotypes. Moreover, OEF-1 binding correlates with the active modification H3K36me3 and sustains H3K36me3 levels in the absence of MES-4 activity. OEF-1 also promotes efficient mRNA splicing activity, a process that is influenced by H3K36me3 levels. Finally, OEF-1 limits deposition of the silencing modification H3K27me3 on the X chromosome and at repressed autosomal loci. We propose that OEF-1 might act as an intermediary to mediate the downstream effects of H3K36me3 that promote transcript integrity, and indirectly affect gene silencing as a consequence.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Código das Histonas , Histonas/metabolismo , Cromossomo X , Zinco
3.
Nat Commun ; 12(1): 6366, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737269

RESUMO

During development, looping of an enhancer to a promoter is frequently observed in conjunction with temporal and tissue-specific transcriptional activation. The chromatin insulator-associated protein Alan Shepard (Shep) promotes Drosophila post-mitotic neuronal remodeling by repressing transcription of master developmental regulators, such as brain tumor (brat), specifically in maturing neurons. Since insulator proteins can promote looping, we hypothesized that Shep antagonizes brat promoter interaction with an as yet unidentified enhancer. Using chromatin conformation capture and reporter assays, we identified two enhancer regions that increase in looping frequency with the brat promoter specifically in pupal brains after Shep depletion. The brat promoters and enhancers function independently of Shep, ruling out direct repression of these elements. Moreover, ATAC-seq in isolated neurons demonstrates that Shep restricts chromatin accessibility of a key brat enhancer as well as other enhancers genome-wide in remodeling pupal but not larval neurons. These enhancers are enriched for chromatin targets of Shep and are located at Shep-inhibited genes, suggesting direct Shep inhibition of enhancer accessibility and gene expression during neuronal remodeling. Our results provide evidence for temporal regulation of chromatin looping and enhancer accessibility during neuronal maturation.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Cromatina/química , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Appl Opt ; 47(31): G72-9, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122706

RESUMO

The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be(3)Al(2)Si(6)O(18)) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo #1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance.

5.
Genetics ; 208(2): 549-563, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29167199

RESUMO

The purpose of germ cells is to ensure the faithful transmission of genetic material to the next generation. To develop into mature gametes, germ cells must pass through cell cycle checkpoints while maintaining totipotency and genomic integrity. How germ cells coordinate developmental events while simultaneously protecting their unique fate is not well understood. Here, we characterize a novel nuclear protein, Oocyte-Excluded Factor-1 (OEF-1), with highly specific germline expression in Caenorhabditis elegans OEF-1 is initially detected early in embryogenesis and is expressed in the nuclei of all germ cells during larval stages. In adults, OEF-1 expression abruptly decreases just prior to oocyte differentiation. In oef-1 mutants, the developmental progression of germ cells is accelerated, resulting in subtle defects at multiple stages of germ cell development. Lastly, OEF-1 is primarily associated with the bodies of germline-expressed genes, and as such is excluded from the X chromosome. We hypothesize that OEF-1 may regulate the rate of progression through germ cell development, providing insight into how these critical maturation events are coordinated.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Animais , Apoptose/genética , Proteínas de Caenorhabditis elegans/metabolismo , Masculino , Mutação , Oogênese/genética , Especificidade de Órgãos/genética , Fenótipo , Espermatogênese/genética
6.
Anal Bioanal Chem ; 385(2): 263-71, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16544128

RESUMO

Beryl (Be3Al2Si6O18) is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of geologic settings worldwide. A methodology and analytical protocol were developed for the analysis of beryl by laser-induced breakdown spectroscopy (LIBS) that minimizes the coefficient of variance for multiple analyses of the same specimen. The parameters considered were laser energy/pulse, time delay and crystallographic orientation. Optimal analytical conditions are a laser energy/pulse of 102 mJ and a time delay of 2 micros. Beryl compositions measured parallel and perpendicular to the c axis were identical within analytical error. LIBS analysis of 96 beryls from 16 countries (Afghanistan, Brazil, Canada, China, Colombia, India, Ireland, Italy, Madagascar, Mexico, Mozambique, Namibia, Norway, Russia, Tanzania and United States), Antarctica, and ten US states (AZ, CA, CO, CT, ID, ME, NC, NH, NM and UT) were undertaken to determine whether or not LIBS analysis can be used to determine the provenance of gem beryl.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa