Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Cell Dev Biol ; 29: 529-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23875647

RESUMO

Shape changes and topological remodeling of membranes are essential for the identity of organelles and membrane trafficking. Although all cellular membranes have common features, membranes of different organelles create unique environments that support specialized biological functions. The endoplasmic reticulum (ER) is a prime example of this specialization, as its lipid bilayer forms an interconnected system of cisternae, vesicles, and tubules, providing a highly compartmentalized structure for a multitude of biochemical processes. A variety of peripheral and integral membrane proteins that facilitate membrane curvature generation, fission, and/or fusion have been identified over the past two decades. Among these, the dynamin-related proteins (DRPs) have emerged as key players. Here, we review recent advances in our functional and molecular understanding of fusion DRPs, exemplified by atlastin, an ER-resident DRP that controls ER structure, function, and signaling.


Assuntos
Guanosina Trifosfato/metabolismo , Fusão de Membrana , Animais , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Plantas/metabolismo , Leveduras/citologia , Leveduras/metabolismo
2.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38757366

RESUMO

Nesprin proteins, which are components of the linker of nucleoskeleton and cytoskeleton (LINC) complex, are located within the nuclear envelope and play prominent roles in nuclear architecture. For example, LINC complex proteins interact with both chromatin and the cytoskeleton. Here, we report that the Drosophila Nesprin MSP300 has an additional function in autophagy within larval body wall muscles. RNAi-mediated MSP300 knockdown in larval body wall muscles resulted in defects in the contractile apparatus, muscle degeneration and defective autophagy. In particular, MSP300 knockdown caused accumulation of cytoplasmic aggregates that contained poly-ubiquitylated cargo, as well as the autophagy receptor ref(2)P (the fly homolog of p62 or SQSTM) and Atg8a. Furthermore, MSP300 knockdown larvae expressing an mCherry-GFP-tagged Atg8a transgene exhibited aberrant persistence of the GFP signal within these aggregates, indicating failure of autophagosome maturation. These autophagy deficits were similar to those exhibited by loss of the endoplasmic reticulum (ER) fusion protein Atlastin (Atl), raising the possibility that Atl and MSP300 might function in the same pathway. In support of this possibility, we found that a GFP-tagged MSP300 protein trap exhibited extensive localization to the ER. Alteration of ER-directed MSP300 might abrogate important cytoskeletal contacts necessary for autophagosome completion.


Assuntos
Autofagia , Proteínas de Drosophila , Proteostase , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Retículo Endoplasmático/metabolismo , Músculos/metabolismo , Larva/metabolismo , Larva/genética , Proteínas dos Microfilamentos , Proteínas Musculares
3.
Cell ; 146(2): 290-302, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21784249

RESUMO

Macroautophagy mediates the degradation of long-lived proteins and organelles via the de novo formation of double-membrane autophagosomes that sequester cytoplasm and deliver it to the vacuole/lysosome; however, relatively little is known about autophagosome biogenesis. Atg8, a phosphatidylethanolamine-conjugated protein, was previously proposed to function in autophagosome membrane expansion, based on the observation that it mediates liposome tethering and hemifusion in vitro. We show here that with physiological concentrations of phosphatidylethanolamine, Atg8 does not act as a fusogen. Rather, we provide evidence for the involvement of exocytic Q/t-SNAREs in autophagosome formation, acting in the recruitment of key autophagy components to the site of autophagosome formation, and in regulating the organization of Atg9 into tubulovesicular clusters. Additionally, we found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 transport. Thus, multiple SNARE-mediated fusion events are likely to be involved in autophagosome biogenesis.


Assuntos
Autofagia , Fagossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
J Virol ; 97(8): e0080223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37504573

RESUMO

The human astrovirus (HAstV) is a non-enveloped, single-stranded RNA virus that is a common cause of gastroenteritis. Most non-enveloped viruses use membrane disruption to deliver the viral genome into a host cell after virus uptake. The virus-host factors that allow for HAstV cell entry are currently unknown but thought to be associated with the host-protease-mediated viral maturation. Using in vitro liposome disruption analysis, we identified a trypsin-dependent lipid disruption activity in the capsid protein of HAstV serotype 8. This function was further localized to the P1 domain of the viral capsid core, which was both necessary and sufficient for membrane disruption. Site-directed mutagenesis identified a cluster of four trypsin cleavage sites necessary to retain the lipid disruption activity, which is likely attributed to a short stretch of sequence ending at arginine 313 based on mass spectrometry of liposome-associated peptides. The membrane disruption activity was conserved across several other HAstVs, including the emerging VA2 strain, and effective against a wide range of lipid identities. This work provides key functional insight into the protease maturation process essential to HAstV infectivity and presents a method to investigate membrane penetration by non-enveloped viruses in vitro. IMPORTANCE Human astroviruses (HAstVs) are an understudied family of viruses that cause mild gastroenteritis but have recent cases associated with a more severe neural pathogenesis. Many important elements of the HAstV life cycle are not well understood, and further elucidating them can help understand the various forms of HAstV pathogenesis. In this study, we utilized an in vitro liposome-based assay to describe and characterize a previously unreported lipid disruption activity. This activity is dependent on the protease cleavage of key sites in HAstV capsid core and can be controlled by site-directed mutagenesis. Our group observed this activity in multiple strains of HAstV and in multiple lipid conditions, indicating this may be a conserved activity across the AstV family. The discovery of this function provides insight into HAstV cellular entry, pathogenesis, and a possible target for future therapeutics.


Assuntos
Infecções por Astroviridae , Gastroenterite , Mamastrovirus , Humanos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Mamastrovirus/genética , Tripsina , Lipossomos , Peptídeos/genética , Lipídeos , Filogenia
5.
Mol Psychiatry ; 26(3): 736-746, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159186

RESUMO

Although the activities of many signaling pathways are dysregulated during the progression of neurodegenerative and muscle degeneration disorders, the precise sequence of cellular events leading to degeneration has not been fully elucidated. Two kinases of particular interest, the growth-promoting Tor kinase and the energy sensor AMPK, appear to show reciprocal changes in activity during degeneration, with increased Tor activity and decreased AMPK activity reported. These changes in activity have been predicted to cause degeneration by attenuating autophagy, leading to the accumulation of unfolded protein aggregates and dysfunctional mitochondria, the consequent increased production of reactive oxygen species (ROS), and ultimately oxidative damage. Here we propose that this increased ROS production not only causes oxidative damage but also ultimately induces an oxidative stress response that reactivates the redox-sensitive AMPK and activates the redox-sensitive stress kinase JNK. Activation of these kinases reactivates autophagy. Because at this late stage, cells have become filled with dysfunctional mitochondria and protein aggregates, which are autophagy targets, this autophagy reactivation induces degeneration. The mechanism proposed here emphasizes that the process of degeneration is dynamic, that dysregulated signaling pathways change over time and can transition from deleterious to beneficial and vice versa as degeneration progresses.


Assuntos
Autofagia , Estresse Oxidativo , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(32): 8550-8555, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739952

RESUMO

Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.


Assuntos
Orthomyxoviridae/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/ultraestrutura , Cristalografia por Raios X , Vírus da Influenza A/química , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Orthomyxoviridae/fisiologia , Polimerização , Proteínas Virais/metabolismo , Vírion/metabolismo , Liberação de Vírus/fisiologia
7.
PLoS Genet ; 13(6): e1006825, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640802

RESUMO

Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD.


Assuntos
Metabolismo dos Carboidratos , Transtornos Peroxissômicos/genética , Peroxissomos/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glucose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Fator 2 da Biogênese de Peroxissomos , Peroxissomos/genética , Transcriptoma
8.
J Biol Chem ; 293(48): 18514-18524, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30287684

RESUMO

The endoplasmic reticulum (ER) is composed of flattened sheets and interconnected tubules that extend throughout the cytosol and makes physical contact with all other cytoplasmic organelles. This cytoplasmic distribution requires continuous remodeling. These discrete ER morphologies require specialized proteins that drive and maintain membrane curvature. The GTPase atlastin is required for homotypic fusion of ER tubules. All atlastin homologs possess a conserved domain architecture consisting of a GTPase domain, a three-helix bundle middle domain, a hydrophobic membrane anchor, and a C-terminal cytosolic tail. Here, we examined several Drosophila-human atlastin chimeras to identify functional domains of human atlastin-1 in vitro Although all chimeras could hydrolyze GTP, only chimeras containing the human C-terminal tail, hydrophobic segments, or both could fuse membranes in vitro We also determined that co-reconstitution of atlastin with reticulon does not influence GTPase activity or membrane fusion. Finally, we found that both human and Drosophila atlastin hydrophobic membrane anchors do not span the membrane, but rather form two intramembrane hairpin loops. The topology of these hairpins remains static during membrane fusion and does not appear to play an active role in lipid mixing.


Assuntos
Proteínas de Drosophila/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Bicamadas Lipídicas , Fusão de Membrana , Proteínas de Membrana/metabolismo , Fosfolipídeos/química , Animais , Proteínas de Drosophila/química , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/química , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Domínios Proteicos
9.
J Cell Sci ; 130(2): 453-465, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27909242

RESUMO

The locomotor deficits in the group of diseases referred to as hereditary spastic paraplegia (HSP) reflect degeneration of upper motor neurons, but the mechanisms underlying this neurodegeneration are unknown. We established a Drosophila model for HSP, atlastin (atl), which encodes an ER fusion protein. Here, we show that neuronal atl loss causes degeneration of specific thoracic muscles that is preceded by other pathologies, including accumulation of aggregates containing polyubiquitin, increased generation of reactive oxygen species and activation of the JNK-Foxo stress response pathway. We show that inhibiting the Tor kinase, either genetically or by administering rapamycin, at least partially reversed many of these pathologies. atl loss from muscle also triggered muscle degeneration and rapamycin-sensitive locomotor deficits, as well as polyubiquitin aggregate accumulation. These results indicate that atl loss triggers muscle degeneration both cell autonomously and nonautonomously.


Assuntos
Drosophila melanogaster/fisiologia , Sirolimo/farmacologia , Paraplegia Espástica Hereditária/patologia , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Larva/efeitos dos fármacos , Larva/metabolismo , Longevidade/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Neurônios/metabolismo , Fenótipo , Poliubiquitina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Paraplegia Espástica Hereditária/fisiopatologia
10.
J Cell Sci ; 129(8): 1635-48, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26906425

RESUMO

Hereditary spastic paraplegia (HSP) is a set of genetic diseases caused by mutations in one of 72 genes that results in age-dependent corticospinal axon degeneration accompanied by spasticity and paralysis. Two genes implicated in HSPs encode proteins that regulate endoplasmic reticulum (ER) morphology. Atlastin 1 (ATL1, also known as SPG3A) encodes an ER membrane fusion GTPase and reticulon 2 (RTN2, also known as SPG12) helps shape ER tube formation. Here, we use a new fluorescent ER marker to show that the ER within wild-type Drosophila motor nerve terminals forms a network of tubules that is fragmented and made diffuse upon loss of the atlastin 1 ortholog atl. atl or Rtnl1 loss decreases evoked transmitter release and increases arborization. Similar to other HSP proteins, Atl inhibits bone morphogenetic protein (BMP) signaling, and loss of atl causes age-dependent locomotor deficits in adults. These results demonstrate a crucial role for ER in neuronal function, and identify mechanistic links between ER morphology, neuronal function, BMP signaling and adult behavior.


Assuntos
Drosophila melanogaster , Retículo Endoplasmático/fisiologia , Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/genética , Neurônios Motores/fisiologia , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Paraplegia Espástica Hereditária/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Humanos , Transdução de Sinais , Sinapses , Transmissão Sináptica/genética
11.
Proc Natl Acad Sci U S A ; 112(2): 418-23, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548161

RESUMO

The endoplasmic reticulum (ER) consists of a polygonal network of sheets and tubules interconnected by three-way junctions. This network undergoes continual remodeling through competing processes: the branching and fusion of tubules forms new three-way junctions and new polygons, and junction sliding and ring closure leads to polygon loss. However, little is known about the machinery required to generate and maintain junctions. We previously reported that yeast Lnp1 localizes to ER junctions, and that loss of Lnp1 leads to a collapsed, densely reticulated ER network. In mammalian cells, only approximately half the junctions contain Lnp1. Here we use live cell imaging to show that mammalian Lnp1 (mLnp1) affects ER junction mobility and hence network dynamics. Three-way junctions with mLnp1 are less mobile than junctions without mLnp1. Newly formed junctions that acquire mLnp1 remain stable within the ER network, whereas nascent junctions that fail to acquire mLnp1 undergo rapid ring closure. These findings imply that mLnp1 plays a key role in stabilizing nascent three-way ER junctions.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteolipídeos/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única
12.
J Biol Chem ; 290(8): 4772-4783, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25555915

RESUMO

Fusion of tubular membranes is required to form three-way junctions found in reticular subdomains of the endoplasmic reticulum. The large GTPase Atlastin has recently been shown to drive endoplasmic reticulum membrane fusion and three-way junction formation. The mechanism of Atlastin-mediated membrane fusion is distinct from SNARE-mediated membrane fusion, and many details remain unclear. In particular, the role of the amphipathic C-terminal tail of Atlastin is still unknown. We found that a peptide corresponding to the Atlastin C-terminal tail binds to membranes as a parallel α helix, induces bilayer thinning, and increases acyl chain disorder. The function of the C-terminal tail is conserved in human Atlastin. Mutations in the C-terminal tail decrease fusion activity in vitro, but not GTPase activity, and impair Atlastin function in vivo. In the context of unstable lipid bilayers, the requirement for the C-terminal tail is abrogated. These data suggest that the C-terminal tail of Atlastin locally destabilizes bilayers to facilitate membrane fusion.


Assuntos
Proteínas de Drosophila/química , Retículo Endoplasmático/química , GTP Fosfo-Hidrolases/química , Proteínas de Ligação ao GTP/química , Bicamadas Lipídicas/química , Fusão de Membrana , Proteínas de Membrana/química , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína
13.
Nature ; 460(7258): 978-83, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19633650

RESUMO

Establishment and maintenance of proper architecture is essential for endoplasmic reticulum (ER) function. Homotypic membrane fusion is required for ER biogenesis and maintenance, and has been shown to depend on GTP hydrolysis. Here we demonstrate that Drosophila Atlastin--the fly homologue of the mammalian GTPase atlastin 1 involved in hereditary spastic paraplegia--localizes on ER membranes and that its loss causes ER fragmentation. Drosophila Atlastin embedded in distinct membranes has the ability to form trans-oligomeric complexes and its overexpression induces enlargement of ER profiles, consistent with excessive fusion of ER membranes. In vitro experiments confirm that Atlastin autonomously drives membrane fusion in a GTP-dependent fashion. In contrast, GTPase-deficient Atlastin is inactive, unable to form trans-oligomeric complexes owing to failure to self-associate, and incapable of promoting fusion in vitro. These results demonstrate that Atlastin mediates membrane tethering and fusion and strongly suggest that it is the GTPase activity that is required for ER homotypic fusion.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Dinaminas , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fusão de Membrana , Animais , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplasmático/patologia , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Transporte Proteico , Proteolipídeos/metabolismo
14.
Traffic ; 13(10): 1378-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22758915

RESUMO

Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). Although much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to Caenorhabditis elegans, Drosophila appears to only utilize the peroxisome targeting signal type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system.


Assuntos
Proteínas de Drosophila/análise , Drosophila melanogaster/metabolismo , Peroxissomos/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/enzimologia , Peroxissomos/química , Peroxissomos/enzimologia , Transporte Proteico , Proteoma/análise
15.
Proc Natl Acad Sci U S A ; 108(27): 11133-8, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690399

RESUMO

The biogenesis and maintenance of the endoplasmic reticulum (ER) requires membrane fusion. ER homotypic fusion is driven by the large GTPase atlastin. Domain analysis of atlastin shows that a conserved region of the C-terminal cytoplasmic tail is absolutely required for fusion activity. Atlastin in adjacent membranes must associate to bring the ER membranes into molecular contact. Drosophila atlastin dimerizes in the presence of GTPγS but is monomeric with GDP or without nucleotide. Oligomerization requires the juxtamembrane middle domain three-helix bundle, as does efficient GTPase activity. A soluble version of the N-terminal cytoplasmic domain that contains the GTPase domain and the middle domain three-helix bundle serves as a potent, concentration-dependent inhibitor of membrane fusion both in vitro and in vivo. However, atlastin domains lacking the middle domain are without effect. GTP-dependent dimerization of atlastin generates an enzymatically active protein that drives membrane fusion after nucleotide hydrolysis and conformational reorganization.


Assuntos
Proteínas de Drosophila/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Fusão de Membrana/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Dimerização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Retículo Endoplasmático/fisiologia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Nucleotídeos de Guanina/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos
16.
Proc Natl Acad Sci U S A ; 108(39): 16283-8, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21930898

RESUMO

The mechanisms governing atlastin-mediated membrane fusion are unknown. Here we demonstrate that a three-helix bundle (3HB) within the middle domain is required for oligomerization. Mutation of core hydrophobic residues within these helices inactivates atlastin function by preventing membrane tethering and the subsequent fusion. GTP binding induces a conformational change that reorients the GTPase domain relative to the 3HB to permit self-association, but the ability to hydrolyze GTP is required for full fusion, indicating that nucleotide binding and hydrolysis play distinct roles. Oligomerization of atlastin stimulates its ability to hydrolyze GTP, and the energy released drives lipid bilayer merger. Mutations that prevent atlastin self-association also abolish oligomerization-dependent stimulation of GTPase activity. Furthermore, increasing the distance of atlastin complex formation from the membrane inhibits fusion, suggesting that this distance is crucial for atlastin to promote fusion.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Guanosina Trifosfato/fisiologia , Proteínas de Membrana/fisiologia , Animais , Sequência de Bases , Primers do DNA , Drosophila , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólise
17.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746221

RESUMO

Peroxisomal Biogenesis Disorders Zellweger Spectrum (PBD-ZSD) disorders are a group of autosomal recessive defects in peroxisome formation that produce a multi-systemic disease presenting at birth or in childhood. Well documented clinical biomarkers such as elevated very long chain fatty acids (VLCFA) are key biochemical diagnostic findings in these conditions. Additional, secondary biochemical alterations such as elevated very long chain lysophosphatidylcholines are allowing newborn screening for peroxisomal disease. In addition, a more widespread impact on metabolism and lipids is increasingly being documented by metabolomic and lipidomic studies. Here we utilize Drosophila models of pex2 and pex16 as well as human plasma from individuals with PEX1 mutations. We identify phospholipid abnormalities in Drosophila larvae and brain characterized by differences in the quantities of phosphatidylcholine (PC) and phosphatidylethanolamines (PE) with long chain lengths and reduced levels of intermediate chain lengths. For diacylglycerol (DAG) the precursor of PE and PC through the Kennedy pathway, the intermediate chain lengths are increased suggesting an imbalance between DAGs and PE and PC that suggests the two acyl chain pools are not in equilibrium. Altered acyl chain lengths are also observed in PE ceramides in the fly models. Interestingly, plasma from human subjects exhibit phospholipid alterations similar to the fly model. Moreover, human plasma shows reduced levels of sphingomyelin with 18 and 22 carbon lengths but normal levels of C24. Our results suggest that peroxisomal biogenesis defects alter shuttling of the acyl chains of multiple phospholipid and ceramide lipid classes, whereas DAG species with intermediate fatty acids are more abundant. These data suggest an imbalance between de novo synthesis of PC and PE through the Kennedy pathway and remodeling of existing PC and PE through the Lands cycle. This imbalance is likely due to overabundance of very long and long acyl chains in PBD and a subsequent imbalance due to substrate channeling effects. Given the fundamental role of phospholipid and sphingolipids in nervous system functions, these observations suggest PBD-ZSD are diseases characterized by widespread cell membrane lipid abnormalities.

18.
PLoS One ; 19(1): e0291477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166124

RESUMO

Several lines of evidence demonstrate that increased neuronal excitability can enhance proteomic stress. For example, epilepsy can enhance the proteomic stress caused by the expression of certain aggregation-prone proteins implicated in neurodegeneration. However, unanswered questions remain concerning the mechanisms by which increased neuronal excitability accomplishes this enhancement. Here we test whether increasing neuronal excitability at a particular identified glutamatergic synapse, the Drosophila larval neuromuscular junction, can enhance the proteomic stress caused by mutations in the ER fusion/GTPase gene atlastin (atl). It was previously shown that larval muscle from the atl2 null mutant is defective in autophagy and accumulates protein aggregates containing ubiquitin (poly-UB aggregates). To determine if increased neuronal excitability might enhance the increased proteomic stress caused by atl2, we activated the TrpA1-encoded excitability channel within neurons. We found that TrpA1 activation had no effect on poly-UB aggregate accumulation in wildtype muscle, but significantly increased poly-UB aggregate number in atl2 muscle. Previous work has shown that atl loss from either neuron or muscle increases muscle poly-UB aggregate number. We found that neuronal TrpA1 activation enhanced poly-UB aggregate number when atl was removed from muscle, but not from neuron. Neuronal TrpA1 activation enhanced other phenotypes conferred by muscle atl loss, such as decreased pupal size and decreased viability. Taken together, these results indicate that the proteomic stress caused by muscle atl loss is enhanced by increasing neuronal excitability.


Assuntos
Neurônios Motores , Proteômica , Animais , Neurônios Motores/metabolismo , Músculos/metabolismo , Proteínas/metabolismo , Drosophila/metabolismo , Autofagia
19.
Autophagy ; 20(1): 131-150, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37649246

RESUMO

ABBREVIATIONS: atl atlastin; ALR autophagic lysosome reformation; ER endoplasmic reticulum; GFP green fluorescent protein; HSP hereditary spastic paraplegia; Lamp1 lysosomal associated membrane protein 1 PolyUB polyubiquitin; RFP red fluorescent protein; spin spinster; mTor mechanistic Target of rapamycin; VCP valosin containing protein.


Assuntos
Autofagia , Drosophila , Animais , Autofagia/fisiologia , Lisossomos/metabolismo , Músculos , Serina-Treonina Quinases TOR/metabolismo
20.
Plant J ; 69(6): 957-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22082223

RESUMO

The mechanisms underlying the organization and dynamics of plant endomembranes are largely unknown. Arabidopsis RHD3, a distant member of the dynamin superfamily, has recently been implicated in plant ER morphology and Golgi movement through analyses of dominant-negative mutants of the putative GTPase domain in a heterologous system. Whether RHD3 is indispensable for ER architecture and what role regions other than the putative GTPase domain play in RHD3 function are unanswered questions. Here we characterized an EMS mutant, gom8, with disrupted Golgi movement and positioning and compromised ER shape and dynamics. gom8 mapped to a missense mutation in the RHD3 hairpin loop domain, causing accumulation of the mutant protein into large structures, a markedly different distribution compared with wild-type RHD3 over the ER network. Despite the GOM8 distribution, tubules fused in the peripheral ER of the gom8 mutant. These data imply that integrity of the hairpin region is important for the subcellular distribution of RHD3, and that reduced availability of RHD3 over the ER can cause ER morphology defects, but does not prevent peripheral fusion between tubules. This was confirmed by evidence that gom8 was phenocopied in an RHD3 null background. Furthermore, we established that the region encompassing the RHD3 hairpin domain and the C-terminal cytosolic domain is necessary for RHD3 function. We conclude that RHD3 is important in ER morphology, but is dispensable for peripheral ER tubulation in an endogenous context, and that its activity relies on the C-terminal region in addition to the GTPase domain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Substituição de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/genética , Ativação Enzimática , Ensaios Enzimáticos , Proteínas de Ligação ao GTP/genética , Complexo de Golgi/genética , Mutação de Sentido Incorreto , Fenótipo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa