Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921642

RESUMO

A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32T, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32T were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.3 and 7.6 (optimum, pH 5.8) and in the presence of 2.0-4.0 % NaCl (optimum, 2.5 %). The isolate was able to grow chemolithoautotrophically with molecular hydrogen, thiosulfate or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate and molecular oxygen were each used as a sole electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences placed ISO32T in the genus Hydrogenimonas of the class Epsilonproteobacteria, with Hydrogenimonas thermophila EP1-55-1 %T as its closest relative (95.95 % similarity). On the basis of the phylogenetic, physiological and genomic characteristics, it is proposed that the organism represents a novel species within the genus Hydrogenimonas, Hydrogenimonas cancrithermarum sp. nov. The type strain is ISO32T (=JCM 39185T =KCTC 25252T). Furthermore, the genomic properties of members of the genus Hydrogenimonas are distinguished from those of members of other thermophilic genera in the orders Campylobacterales (Nitratiruptor and Nitrosophilus) and Nautiliales (Caminibacter, Nautilia and Lebetimonas), with larger genome sizes and lower 16S rRNA G+C content values. Comprehensive metabolic comparisons based on genomes revealed that genes responsible for the Pta-AckA pathway were observed exclusively in members of mesophilic genera in the order Campylobacterales and of the genus Hydrogenimonas. Our results indicate that the genus Hydrogenimonas contributes to elucidating the evolutionary history of Epsilonproteobacteria in terms of metabolism and transition from a thermophilic to a mesophilic lifestyle.


Assuntos
DNA Bacteriano , Epsilonproteobacteria , Tiossulfatos/metabolismo , Água do Mar/microbiologia , Filogenia , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Campylobacterales/metabolismo , Oxirredução , Enxofre/metabolismo
2.
Environ Microbiol ; 24(1): 390-403, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964547

RESUMO

Marine intertidal sediments fluctuate in redox conditions and nutrient availability, and they are also known as an important sink of nitrogen mainly through denitrification, yet how denitrifying bacteria adapt to this dynamic habitat remains largely untapped. Here, we investigated novel intertidal benthic ecotypes of the model pelagic marine bacterium Ruegeria pomeroyi DSS-3 with a population genomic approach. While differing by only 1.3% at the 16S rRNA gene level, members of the intertidal benthic ecotypes are complete denitrifiers whereas the pelagic ecotype representative (DSS-3) is a partial denitrifier lacking a nitrate reductase. The intertidal benthic ecotypes are further differentiated by using non-homologous nitrate reductases and a different set of genes that allow alleviating oxidative stress and acquiring organic substrates. In the presence of nitrate, the two ecotypes showed contrasting growth patterns under initial oxygen concentrations at 1 vol% versus 7 vol% and supplemented with different carbon sources abundant in intertidal sediments. Collectively, this combination of evidence indicates that there are cryptic niches in coastal intertidal sediments that support divergent evolution of denitrifying bacteria. This knowledge will in turn help understand how these benthic environments operate to effectively remove nitrogen.


Assuntos
Nitratos , Rhodobacteraceae , Desnitrificação/genética , Ecótipo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Respiração , Rhodobacteraceae/genética
3.
Appl Environ Microbiol ; 88(2): e0208321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788061

RESUMO

Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that Campylobacteria (previously Epsilonproteobacteria) often dominate the microbial community and that three genera, Arcobacter, Sulfurimonas, and Sulfurovum, frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for Arcobacter, Sulfurimonas, and Sulfurovum to quantify their activity using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) combined with fluorescence-activated cell sorting. All three genera actively fixed CO2 in short-term (∼ 20 h) incubations, but responded differently to the additions of nitrate and oxygen. Oxygen additions had the largest effect on community composition, and caused a pronounced shift in community composition at the amplicon sequence variant (ASV) level after only 20 h of incubation. The effect of oxygen on carbon fixation rates appeared to depend on the initial starting community. The presented results support the hypothesis that these chemoautotrophic genera possess functionally redundant core metabolic capabilities, but also reveal finer-scale differences in growth likely reflecting adaptation of physiologically-distinct phylotypes to varying oxygen concentrations in situ. Overall, our study provides new insights into how oxygen controls community composition and total chemoautotrophic activity, and underscores how quickly deep-sea vent microbial communities respond to disturbances. IMPORTANCE Sulfidic environments worldwide are often dominated by sulfur-oxidizing, carbon-fixing Campylobacteria. Environmental factors associated with this group's dominance are now understood, but far less is known about the ecology and physiology of members of subgroups of chemoautotrophic Campylobacteria. In this study, we used a novel method to differentiate the genus-specific chemoautotrophic activity of three subtypes of Campylobacteria. In combination with evidence from microscopic counts, chemical consumption/production during incubations, and DNA-based measurements, our data show that oxygen concentration affects both community composition and chemoautotrophic function in situ. These results help us better understand factors controlling microbial diversity at deep-sea hydrothermal vents, and provide first-order insights into the ecophysiological differences between these distinct microbial taxa.


Assuntos
Fontes Hidrotermais , Ciclo do Carbono , Fontes Hidrotermais/microbiologia , Hibridização in Situ Fluorescente , Oxigênio , Filogenia , RNA Ribossômico 16S , Água do Mar/microbiologia
4.
Environ Microbiol ; 23(6): 3240-3250, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33938123

RESUMO

Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach. Using these mocks, we show that universal primers (515Y/926R) outperformed eukaryote-specific V4 primers in observed versus expected abundance correlations (slope = 0.88 vs. 0.67-0.79), and mock community members with single mismatches to the primer were strongly underestimated (threefold to eightfold). Using field samples, both primers yielded similar 18S beta-diversity patterns (Mantel test, p < 0.001) but differences in relative proportions of many rarer taxa. To test for length biases, we mixed mock communities (16S + 18S) before PCR and found a twofold underestimation of 18S sequences due to sequencing bias. Correcting for the twofold underestimation, we estimate that, in Southern California field samples (1.2-80 µm), there were averages of 35% 18S, 28% chloroplast 16S, and 37% prokaryote 16S rRNA genes. These data demonstrate the potential for universal primers to generate comprehensive microbiome profiles.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Viés , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
5.
Proc Natl Acad Sci U S A ; 115(26): 6756-6761, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891698

RESUMO

Below the seafloor at deep-sea hot springs, mixing of geothermal fluids with seawater supports a potentially vast microbial ecosystem. Although the identity of subseafloor microorganisms is largely known, their effect on deep-ocean biogeochemical cycles cannot be predicted without quantitative measurements of their metabolic rates and growth efficiency. Here, we report on incubations of subseafloor fluids under in situ conditions that quantitatively constrain subseafloor primary productivity, biomass standing stock, and turnover time. Single-cell-based activity measurements and 16S rRNA-gene analysis showed that Campylobacteria dominated carbon fixation and that oxygen concentration and temperature drove niche partitioning of closely related phylotypes. Our data reveal a very active subseafloor biosphere that fixes carbon at a rate of up to 321 µg C⋅L-1⋅d-1, turns over rapidly within tens of hours, rivals the productivity of chemosynthetic symbioses above the seafloor, and significantly influences deep-ocean biogeochemical cycling.


Assuntos
Organismos Aquáticos/metabolismo , Fontes Hidrotermais , Microbiota , Biomassa , Campylobacter/metabolismo , Carbono/metabolismo , Ecossistema , Temperatura Alta , Oxigênio/metabolismo , Oceano Pacífico , Pressão , Ribotipagem , Água do Mar/química
6.
Environ Microbiol ; 21(1): 244-258, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362214

RESUMO

Chemoautotrophic bacteria belonging to the genus Sulfurimonas (class Campylobacteria) were previously identified as key players in the turnover of zero-valence sulfur, a central intermediate in the marine sulfur cycle. S. denitrificans was further shown to be able to oxidize cyclooctasulfur (S8 ). However, at present the mechanism of activation and metabolism of cyclooctasulfur is not known. Here, we assessed the transcriptome and proteome of S. denitrificans grown with either thiosulfate or S8 as the electron donor. While the overall expression profiles under the two growth conditions were rather similar, distinct differences were observed that could be attributed to the utilization of S8 . This included a higher abundance of expressed genes related to surface attachment in the presence of S8 , and the differential regulation of the sulfur-oxidation multienzyme complex (SOX), which in S. denitrificans is encoded in two gene clusters: soxABXY 1 Z 1 and soxCDY 2 Z 2 . While the proteins of both clusters were present with thiosulfate, only proteins of the soxCDY 2 Z 2 were detected at significant levels with S8 . Based on these findings a model for the oxidation of S8 is proposed. Our results have implications for interpreting metatranscriptomic and -proteomic data and for the observed high level of diversification of soxY 2 Z 2 among sulfur-oxidizing Campylobacteria.


Assuntos
Helicobacteraceae/genética , Helicobacteraceae/metabolismo , Proteoma , Enxofre/metabolismo , Tiossulfatos/metabolismo , Transcriptoma , Crescimento Quimioautotrófico , Regulação Bacteriana da Expressão Gênica , Oxirredução , Proteômica
7.
Front Microbiol ; 13: 895875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836413

RESUMO

Basin-scale biogeographic observations of marine pelagic pro- and eukaryotic communities are necessary to understand forces driving community composition and for providing a baseline to monitor global change. Deep sequencing of rRNA genes provides community composition at high resolution; yet, it is unclear how the choice of primers affects biogeographic patterns. Here, we re-amplified 16S rRNA genes from DNA sampled during R/V Polarstern Cruise ANT28-5 over a latitudinal transect across the Atlantic Ocean from 52°S to 47°N using universal V4-V5 primers and compared the results with those obtained previously with V5-V6 bacteria-specific primers. For validation of our results, we inferred community composition based on 16S rRNA genes of metagenomes from the same stations and single amplified genomes (SAGs) from the Global Ocean Reference Genome (GORG) database. We found that the universal V4-V5 primers retrieved SAR11 clades with similar relative proportions as those found in the GORG database while the V5-V6 primers recovered strongly diverging clade abundances. We confirmed an inverse bell-shaped distance-decay relationship and a latitudinal diversity gradient that did not decline linearly with absolute latitude in the Atlantic Ocean. Patterns were modified by sampling depth, sequencing depth, choice of primers, and abundance filtering. Especially richness patterns were not robust to methodological change. This study offers a detailed picture of the Atlantic Ocean microbiome using a universal set of PCR primers that allow for the conjunction of biogeographical patterns among organisms from different domains of life.

8.
Anal Bioanal Chem ; 401(8): 2609-16, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21915640

RESUMO

Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid.


Assuntos
Biocombustíveis/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Microalgas/química , Triglicerídeos/análise , Triglicerídeos/química , Triglicerídeos/isolamento & purificação
9.
mSystems ; 6(3): e0056521, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34060911

RESUMO

Small subunit rRNA (SSU rRNA) amplicon sequencing can quantitatively and comprehensively profile natural microbiomes, representing a critically important tool for studying diverse global ecosystems. However, results will only be accurate if PCR primers perfectly match the rRNA of all organisms present. To evaluate how well marine microorganisms across all 3 domains are detected by this method, we compared commonly used primers with >300 million rRNA gene sequences retrieved from globally distributed marine metagenomes. The best-performing primers compared to 16S rRNA of bacteria and archaea were 515Y/926R and 515Y/806RB, which perfectly matched over 96% of all sequences. Considering cyanobacterial and chloroplast 16S rRNA, 515Y/926R had the highest coverage (99%), making this set ideal for quantifying marine primary producers. For eukaryotic 18S rRNA sequences, 515Y/926R also performed best (88%), followed by V4R/V4RB (18S rRNA specific; 82%)-demonstrating that the 515Y/926R combination performs best overall for all 3 domains. Using Atlantic and Pacific Ocean samples, we demonstrate high correspondence between 515Y/926R amplicon abundances (generated for this study) and metagenomic 16S rRNA (median R2 = 0.98, n = 272), indicating amplicons can produce equally accurate community composition data compared with shotgun metagenomics. Our analysis also revealed that expected performance of all primer sets could be improved with minor modifications, pointing toward a nearly completely universal primer set that could accurately quantify biogeochemically important taxa in ecosystems ranging from the deep sea to the surface. In addition, our reproducible bioinformatic workflow can guide microbiome researchers studying different ecosystems or human health to similarly improve existing primers and generate more accurate quantitative amplicon data. IMPORTANCE PCR amplification and sequencing of marker genes is a low-cost technique for monitoring prokaryotic and eukaryotic microbial communities across space and time but will work optimally only if environmental organisms match PCR primer sequences exactly. In this study, we evaluated how well primers match globally distributed short-read oceanic metagenomes. Our results demonstrate that primer sets vary widely in performance, and that at least for marine systems, rRNA amplicon data from some primers lack significant biases compared to metagenomes. We also show that it is theoretically possible to create a nearly universal primer set for diverse saline environments by defining a specific mixture of a few dozen oligonucleotides, and present a software pipeline that can guide rational design of primers for any environment with available meta'omic data.

10.
11.
Front Microbiol ; 10: 1262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244796

RESUMO

Phage-host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage-host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean. Most were distantly related to known prophages, while their hosts included bacterial phyla Campylobacterota, Bacteroidetes, Chlorobi, Proteobacteria, Lentisphaerae, Spirochaetes, and Thermotogae. Our results suggest the predominance of lysogeny over lytic interaction in diffuse-flow, deep-sea hydrothermal vents, despite the high activity of the dominant Campylobacteria that would favor lytic infections. We show that some of the identified lysogens have co-evolved with their host over geological time scales and that their genes are transcribed in the environment. Functional annotations of lysogeny-related genes suggest involvement in horizontal gene transfer enabling host's protection against toxic metals and antibacterial compounds.

12.
Biochem Mol Biol Educ ; 36(4): 255-61, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21591204

RESUMO

This study provides a concise background to the biochemical search for the origin of life, as grounded in the field of prebiotic chemistry. It is intended to provide a good summary of competing theories and place them in a broader context, raising questions about weaknesses in any particular theory. This material is relevant for science educators at all levels, and will stimulate interest in a wide variety of students.

13.
Microbiologyopen ; 7(4): e00586, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29423975

RESUMO

Chemoautotrophic bacteria belonging to the genus Sulfurimonas in the class Campylobacteria are widespread in many marine environments characterized by redox interfaces, yet little is known about their physiological adaptations to different environmental conditions. Here, we used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in a targeted metabolomics approach to study the adaptations of Sulfurimonas denitrificans to varying salt concentrations that are found in its natural habitat of tidal mudflats. Proline was identified as one of the most abundant internal metabolites and its concentration showed a strong positive correlation with ionic strength, suggesting that it acts as an important osmolyte in S. denitrificans. 2,3-dihydroxypropane-1-sulfonate was also positively correlated with ionic strength, indicating it might play a previously unrecognized role in osmoregulation. Furthermore, the detection of metabolites from the reductive tricarboxylic acid cycle at high internal concentrations reinforces the importance of this pathway for carbon fixation in Campylobacteria and as a hub for biosynthesis. As the first report of metabolomic data for an campylobacterial chemolithoautotroph, this study provides data that will be useful to understand the adaptations of Campylobacteria to their natural habitat at redox interfaces.


Assuntos
Epsilonproteobacteria/metabolismo , Prolina/metabolismo , Crescimento Quimioautotrófico , Cromatografia Líquida , Ecossistema , Epsilonproteobacteria/química , Epsilonproteobacteria/genética , Metabolômica , Oxirredução , Prolina/análise , Espectrometria de Massas em Tandem
14.
Lipids ; 47(2): 195-207, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22057577

RESUMO

To assess Soxhlet extraction as a method for quantifying fatty acids (FA) of microalgae, crude lipid, FA content from Soxhlet extracts and FA content from in situ transesterification (ISTE) were compared. In most cases, gravimetric lipid content was considerably greater (up to sevenfold) than the FA content of the crude lipid extract. FA content from Soxhlet lipid extraction and ISTE were similar in 12/18 samples, whereas in 6/18 samples, total FA content from Soxhlet extraction was less than the ISTE procedure. Re-extraction of residual biomass from Soxhlet extraction with ISTE liberated a quantity of FA equivalent to this discrepancy. Employing acid hydrolysis before Soxhlet extraction yielded FA content roughly equivalent to ISTE, indicating that acidic conditions of ISTE are responsible for this observed greater recovery of FA. While crude lipid derived from Soxhlet extraction was not a useful proxy for FA content for the species tested, it is effective in most strains at extracting total saponifiable lipid. Lipid class analysis showed the source of FA was primarily polar lipids in most samples (12/18 lipid extracts contained <5% TAG), even in cases where total FA content was high (>15%). This investigation confirms the usefulness of ISTE, reveals limitations of gravimetric methods for projecting biodiesel potential of microalgae, and reinforces the need for intelligent screening using both FA and lipid class analysis.


Assuntos
Ácidos Graxos/análise , Microalgas/química , Biomassa , Esterificação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa